
Traceable Federated Continual Learning

Supplementary Material

7. Theoretical Analysis
In this section, we provide theoretical analyses to support
our framework. Specifically, we respectively analyze the
effectiveness of the key modules in TagFed.

Privacy analysis of information transfer. In TagFed,
the information transfer is a key step to enable local task
learning and central knowledge aggregation. Although
TagFed does not upload the raw data directly, it exchanges
the feature maps obfuscated with designed noise as the mes-
sage. Therefore, we attempt to analyze the privacy property
of our framework. Concretely, we utilize the following The-
orem to measure privacy.

Theorem 7.1. When an unbiased attacker tries to re-
construct the training data from the trained model x̂ =
Att (z′), the average mean-square error (MSE) of x̂ is
bounded by:

E
[
∥x̂− x∥22

]
≥ d/Tr (Iz′(x)) (3)

where d is the dimension of x and Tr is the trace of a matrix.

Here, Tr (Iz′(x)) /d is called diagonal Fisher informa-
tion leakage, or dFIL. dFIL is a strong indicator of privacy
when it comes to input reconstruction attacks for split in-
ference. For an unbiased attacker, dFIL indicates the recon-
struction feasibility. Details can be found in [10].

In our work, TagFed allows clients to choose differ-
ent variances of noise according to the client requirement.
Specifically, each client can provide a privacy and utility
requirement, which will be used to calculate the concrete
noise to ensure the trade-off. Here we calculated the noise
based on an empirical value (dFIL = 1) and introduced it
into our training process to obtain values in the main text.

Effectiveness analysis of group-wise knowledge ag-
gregation. In this part, we mainly explore whether the
group-wise scheme contributes to knowledge aggregation.
To begin with, we make the following commonly used as-
sumptions.

Assumption 7.2. The objective functions F1, F2, ..., FN in
each device are all L-smooth: for all v and w, Fk(v) ≤
Fk(w) + (v −w)T∇Fk(w) + L

2 ∥v −w∥22.

Assumption 7.3. The objective functions F1, F2, ..., FN in
each device are all µ-strongly convex: for all v and w,
Fk(v) ≥ Fk(w) + (v −w)T∇Fk(w) + µ

2 ∥v −w∥22.

According to a related work [47], the weight divergence
among the uploaded information can affect the aggregation
performance, which can be formally defined as the follow-
ing Theorem.

Theorem 7.4. Suppose Assumption 1 and 2 hold the federa-
tion synchronization is conducted every H steps. The weight
divergence after the m-th synchronization can be bounded
by

∥∆wm∥ ≤ (4)
N∑

k=1

sample(k)∑N
k=1 sample(k)

(zk)T ∥∆wm−1∥

+ η

N∑
k=1

sample(k)∑N
k=1 sample(k)

∥∥pk − pglobal
∥∥H−1∑

j=1(
zk

)j
max
i=1

∥∥∇wEx|y=i log fi(x,w)
∥∥

where zk = 1 + η
∑C

i=1 p
(k)(y = i)λx|y=i and C is the

number of category. p represents the data distribution.

Based on the inequality, we can observe that the dis-
tribution heterogeneity among uploaded information has a
large impact on the final divergence degree. Our group-wise
scheme enables aggregation on the features of the same
task, which significantly mitigates the distribution hetero-
geneity and benefits the final performance.

8. Baseline Description
We briefly summarize the baselines as follows:
• PackNet+FedAvg (PF) [32, 34]: This baseline is a com-

bination of CL methods and FL methods. Concretely, we
first pack multiple tasks into a model by iterative pruning
and then average the parameters of the client models as
federation.

• GLFC [8]: GLFC is a state-of-the-art approach focus-
ing on addressing the catastrophic forgetting problem in
FCL. The key idea is to implement a class-aware gradient
compensation loss and a class-semantic relation distilla-
tion loss to balance the forgetting of old classes.

• FedWeIT [44]: This method employs weighted inter-
client transfer to address the issue of interference from
irrelevant clients.

• FedKNOW [31]: This method ensures the prevention of
catastrophic forgetting and mitigation of negative knowl-
edge transfer by effectively combining signature tasks
identified from the past local tasks and other clients’ cur-
rent tasks.

9. Additional Empirical Results
Due to the page limitation of the main text, here we show
our additional empirical results to further demonstrate the
superiority of TagFed.



Algorithm 1 Pipeline of TagFed

Operation:

1: Distribute a shared model Mini to each client
2: for i=1 to R do
3: Conduct these steps in Client side and Server side

sequentially
4: end for
5: Obtain the final improved model Mfinal

Client side:

1: For each client, train Mini with its own task sequence
St = {s1, s2, ..., sn} based on our traceable task learn-
ing

2: Add noise to the feature maps of the hidden layers, up-
load them as well as the logits to the server

3: Wait for the predicted values sent back from the server
4: Conduct training based on Eq. 2

Server side:

1: Collect the uploaded feature maps
{FM i

1, FM i
2, ..., FM i

N}(i = 1, 2, , , n) from n
clients

2: Feed them into different server models based on the up-
loaded client logits

3: Conduct training based on Eq. 1

1 2 3 4 5 6 7 8 9 10
Task Scale

20

40

60

80

Ac
cu

ra
cy

(%
)

PF GLFC FedWeIT FedKNOW TagFed

Figure 8. Performance of different task scales on CIFAR-100.

9.1. Performance on the different task scales

In the main text, we only test the performance on a fixed
task scale. In this part, we attempt to explore the perfor-
mance on different task scales. Figure 8 - Figure 10 sum-
marize the results. From these tables, we can draw the fol-
lowing conclusions: (1) PackNet+FedAvg cannot achieve
good performance no matter how many tasks are in the se-
quence. This demonstrates that traditional federated aggre-
gation methods that modify the weights are not suitable to
our scenario; (2) The performance of typical FCL baselines,

1 2 3 4 5 6 7 8 9 10
Task Scale

20

40

60

80

Ac
cu

ra
cy

(%
)

PF GLFC FedWeIT FedKNOW TagFed

Figure 9. Performance of different task scales on ImageNetSubset.

1 2 3 4 5 6 7 8 9 10
Task Scale

20

30

40

50

60

70

Ac
cu

ra
cy

(%
)

PF GLFC FedWeIT FedKNOW TagFed

Figure 10. Performance of different task scales on TinyImageNet.

FedWeIT, FedKNOW, and GLFC will degrade significantly
as we increase the number of tasks. This suggests that it
cannot cope with massive repetitive tasks; (3) Our TagFed
maintains a stable and high accuracy for all task scales. In
addition, we find that usually the more tasks we have, the
superior performance we can achieve.

9.2. Task-specific performance on other datasets

Besides the performance of TinyImageNet in the main text,
here we record the task-specific performance on ImageNet-
Subset and CIFAR-10, in order to test the generalization of
our framework. Figure 11 and Figure 12 show the detailed
accuracy performance. We can clearly see that TagFed can
achieve consistent improvement on both datasets. Notably,
The performance gap is higher in the middle tasks than oth-
ers. We believe this is because the repeatability interference
in these locations may have a higher impact on the base-
lines, leading to poor performance.

9.3. Ablation study on other datasets

In the main text, we conduct the ablation study on CIFAR-
100. Here we record the performance of other datasets, in
order to see whether each module in TagFed is still effec-
tive. As shown in Table 4 and Table 5, both TTL and GKA
play an important role in the final performance.



Table 4. Effect of the proposed modules of different task numbers on ImageNetSubset. Ours-w/oModule denotes the performance of our
framework without using the Module.

Task Scale 2 4 6 8 10 Avg

Ours-w/oTTL 52.15% 40.00% 34.48% 30.60% 30.72% 37.59%
Ours-w/oGKA 62.85% 64.10% 62.42% 62.83% 64.12% 63.26%

Ours 67.15% 69.08% 69.17% 69.18% 70.97% 69.11%

Table 5. Effect of the proposed modules of different task numbers on TinyImageNet. Ours-w/oModule denotes the performance of our
framework without using the Module.

Task Scale 2 4 6 8 10 Avg

Ours-w/oTTL 57.10% 42.40% 36.30% 35.60% 36.54% 41.59%
Ours-w/oGKA 59.50% 58.90% 61.07% 60.48% 61.06% 60.20%

Ours 66.90% 65.35% 66.73% 66.53% 68.31% 66.76%

1 2 3 4 5 6 7 8 9 10
Task ID

0

10

20

30

40

50

60

70

80

Ac
cu

ra
cy

PF GLFC FedWeIT FedKNOW Ours

Figure 11. The task-specific performance on the CIFAR-100
dataset.

1 2 3 4 5 6 7 8 9 10
Task ID

0

10

20

30

40

50

60

70

80

Ac
cu

ra
cy

PF GLFC FedWeIT FedKNOW Ours

Figure 12. The task-specific performance on the ImageNetSubset
dataset.

9.4. Non-iid condition and repeatability degree on
other datasets

Figure 13 and Figure 14 show the results on ImageNetSub-
set and TinyImageNet, focusing on the non-iid condition
and the repeatability degree. From these figures, we can find
a similar conclusion to the results in the main text: TagFed
can handle the non-iid condition well and will not be af-
fected by the task repeatability degree.

1 2 3 4 5
Region Size

30

40

50

60

70
Ac

cu
ra

cy
(%

)
PF GLFC FedWeIT FedKNOW TagFed

low middle high
Repeatability Degree

0

20

40

60

Ac
cu

ra
cy

(%
)

PF GLFC FedWeIT FedKNOW TagFed

Figure 13. Results on the ImageNetSubset. Left: Performance on
the non-iid condition. Right: Effect of the Repeatability Degree.

1 2 3 4 5
Region Size

30

40

50

60

Ac
cu

ra
cy

(%
)

PF GLFC FedWeIT FedKNOW TagFed

low middle high
Repeatability Degree

0

20

40

60

Ac
cu

ra
cy

(%
)

PF GLFC FedWeIT FedKNOW TagFed

Figure 14. Results on the TinyImageNet. Left: Performance on
the non-iid condition. Right: Effect of the Repeatability Degree.

9.5. Noise-introduced performance on other
datasets

In this subsection, we evaluate the noise-introduced per-
formance on CIFAR-100 and ImageNetSubset and demon-
strate the results in Table 6 and Table 7. From these tables,
we can clearly observe that for any dataset, TagFed can ex-
ceed other baselines under the privacy-preserving situation.

10. Algorithm
Algorithm 1 shows the whole pipeline of our proposed
TagFed. For the client side, we mainly conduct our trace-
able task learning. For the server side, we focus on the
group-wise knowledge aggregation. Note that the opera-
tions will be implemented sequentially until training con-
vergence.



Table 6. Results of the noise-introduced situation on CIFAR-100.
Here PF denotes PackNet+FedAvg.

Task scale 2 3 5

PF 45.30% 42.96% 31.66%
GLFC 50.10% 54.57% 62.02%

FedWeIT 18.24% 18.17% 18.86%
FedKNOW 36.17% 34.50% 31.87%

Ours(1/dFIL = 1) 70.50% 73.86% 73.60%
Ours(w/o noise) 71.40% 75.27% 75.99%

Table 7. Results of the noise-introduced situation on ImageNet-
Subset. Here PF denotes PackNet+FedAvg.

Task scale 2 3 5

PF 44.70% 29.27% 33.50%
GLFC 39.85% 30.67% 34.22%

FedWeIT 40.16% 36.72% 32.31%
FedKNOW 79.56% 74.64% 56.52%

Ours(1/dFIL = 1) 66.70% 63.90% 64.10%
Ours(w/o noise) 67.15% 65.93% 67.88%


