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1. Traditional FPC Algorithm
Fixed-Point Continuation (FPC), a frequently employed
signal reconstruction algorithm in compressive sensing
(CS), incrementally enhances signal sparsity through a se-
ries of iterative steps to achieve signal recovery. In compar-
ison to iterative shrinkage/thresholding algorithm (ISTA),
FPC leverages operator splitting techniques combined with
path-following strategies to address the ℓ1-norm regulariza-
tion problem, as follows:

min
x∈RN

∥x∥ℓ1 +
µ

2
∥Ax − y∥2ℓ2 , (1)

where µ serves as a penalty coefficient, striking a balance
between the data fitting term and the ℓ1-norm regularization
term.

Let g(x) = ||x||ℓ1 , f(x) = 1
2 ||Ax − y||2ℓ2 . Hence, we

can reformulate Eq. (1) as follows: F (x) = g(x) + µf(x).
Furthermore, let T (x) = ∂F (x). According to the princi-
ples of operator splitting theory, it is feasible to decompose
the function F into the summation of two convex functions:
F = F1 + F2. Likewise, the operator T can also be dis-
assembled into the sum of two maximally monotone opera-
tors: T = T1 + T2. Through rigorous derivation (for com-
prehensive details, please refer to [4]), the iterative formula
for obtaining the minimal solution of F (x) can be articu-
lated as follows:

xk+1 = (I + τT1)
−1(I − τT2)xk. (2)

For the minimization problem, T1 is defined as ∇g(xk) and
T2 is defined as µ∇f(xk), while (I + τT1)

−1 corresponds
to a soft thresholding operation.

This subsequently leads to the specific iterative steps of
the FPC algorithm as outlined below:

xk+1 = sν ◦ h(xk)
= sgn(h(xk))⊙max{|h(xk)| − ν, 0},

(3)

where
h(xk) = I(xk)− τ∇f(xk), (4)

where h(·) bears a resemblance to the gradient descent iter-
ations of f(xk) intuitively, sν(·) embodies the soft thresh-
olding function. τ represents the gradient descent step size,
ν signifies the soft thresholding shrinkage operator, and
there exists an equivalence relationship that µν = τ .

Moreover, FPC introduces an continuation strategy for µ
and incorporates a regularization shrinkage parameter β that

escalates the regularization parameter µ during the iterative
process, resulting in a sequence of growing regularization
parameters {µi}, instead of using a fixed soft thresholding
shrinkage operator. When addressing a new problem asso-
ciated with µi+1, the approximate solution of the current
problem with µi is employed as the starting point, thereby
enhancing the algorithm’ s convergence speed.

2. Implementation Details
We selectively procure a subset of 800 images from the ex-
tensively employed large-scale training dataset, COCO2017
[9]. In conjunction with data augmentation techniques, we
extract 300 individual 32×32 pixel patches from each im-
age, employing random horizontal and vertical flips, rota-
tions, and scaling procedures. Moreover, Set11 [8] dataset
is incorporated as a validation set for the evaluation of the
generalization capabilities of our UFC-Net.

We harness the Adam optimization strategy [6] along
with a cosine annealing scheme, encompassing a total of
100 iterations. The learning rate progressively diminishes
from 5 × 10−4 to 5 × 10−5, with a warm-up phase span-
ning three iterations. Image manipulations are executed
within the YCbCr color space, with evaluations performed
on the Y channel. To assess the quality of reconstruc-
tion images, we conduct sufficient experiments on extensive
datasets, including large-scale datasets such as CIFAR10
and CIFAR100 [7], as well as various widely-recognized
benchmark datasets, such as Set5 [1], Set11 [8], Set14 [17],
McM18 [18], BSD68 [10], Urban100 [5], and General100
[2]. Furthermore, we employ the widely adopted evaluation
metrics, namely peak signal noise ratio (PSNR) and struc-
tural similarity (SSIM), in conjunction with a visual ex-
amination of the reconstructed images, to comprehensively
evaluate the quality of the reconstruction images.

Moreover, as far as CS-MRI related experiments are con-
cerned, the training dataset for this experiment comprises
4865 images extracted from the FastMRI knee dataset [16],
with an additional set of 995 images designated for testing
purposes. The experiment spans a total of 200 epochs, with
a batch size of 1 and a learning rate cosinely decayed from
5 × 10−5 to 1 × 10−6. The inputs are magnetic resonance
images of dimensions 320×320. Within each iteration stage
in the reconstruction module, we first perform the gradient
descent computations in the GDU on images with a scale of
(b, 1, 320, 320), where b means batch size. Subsequently, it
is reshaped into (b · 100, 1, 32, 32) and fed into the CAM
module for further processing. Finally, the output of CAM
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Figure 1. Comparisons of reconstructed MRI images from the FastMRI dataset [16] between UFC-Net and other eight competing algo-
rithms. The first row pertains to comparative images at δ = 0.05, while the second row corresponds to comparative images at δ = 0.10.
Regions of interest are magnified, with distinctive differences indicated by arrows for ease of observation. It is evident that our method
reconstructs textures with enhanced clarity and incorporates a greater level of fine-grained details.

w/o Two w/o AIRB w/o MARB UFC-Net

Figure 2. Visual analysis of feature maps of our UFC-Net and
the three variants derived from it at different iteration stages when
δ = 0.10. The first, second and third rows correspond to the fea-
ture maps of the thrid, fourth and fifth stages in the reconstrction
module respectively.

is restored to (b, 1, 320, 320) as the input of the next stage.
Furthermore, to expedite the training process in the CS-MRI
experiments, the number of iterative stages is adjusted to 6.

3. Ablation Study
3.1. Visual Analysis of Feature Maps

Fig. 2 depicts the visual analysis of the feature maps derived
from our UFC-Net and three variants w/o Two, w/o AIRB,
and w/o MARB at different iteration stages when δ = 0.10.

It is obviously that our MARB and AIRB are capable of
capturing more image details and textures.

3.2. UFC-Net with Different Iterative Stages

To comprehensively investigate the performance of our
UFC-Net, we derive four variations with distinct numbers
of iterative stages, designated as UFC-Net-{8, 9, 10, 11},
with UFC-Net-10 being the default configuration, while the
others adhere to the same training specifications as previ-
ously described.

Table 1. PNSR (dB) and SSIM comparisons of UFC-Net-{8, 9, 10,
11} on datasets Set11 [8] and BSD68 [10] at different sampling
rates δ = {0.01, 0.04, 0.10, 0.25}.

Datasets δ
UFC-Net-8 UFC-Net-9

UFC-Net-10
(default) UFC-Net-11

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Set11

0.01 21.22 0.5591 21.19 0.5589 21.24 0.5607 21.23 0.5612
0.04 25.81 0.7904 25.87 0.7934 25.92 0.7943 25.81 0.7920
0.10 29.96 0.8930 30.01 0.8938 30.15 0.8960 30.08 0.8948
0.25 35.26 0.9559 35.30 0.9560 35.42 0.9567 35.34 0.9561

BSD68

0.01 22.33 0.5261 22.35 0.5264 22.37 0.5268 22.35 0.5264
0.04 25.27 0.6868 25.29 0.6880 25.30 0.6877 25.26 0.6865
0.10 27.89 0.8065 27.91 0.8071 27.95 0.8086 27.93 0.8071
0.25 31.70 0.9087 31.71 0.9091 31.74 0.9093 31.72 0.9087

As presented in Tab. 1, we carry out evaluations on
the Set11 and BSD68 datasets at four diverse sampling
rates δ ∈ {0.01, 0.04, 0.10, 0.25}. The optimal outcomes
are predominantly concentrated in UFC-Net-10 (the de-
fault configuration), while the secondary best results are
unevenly distributed between UFC-Net-9 and UFC-Net-11.
Overall, with an increase of the number of iterative stages,
the performance of our UFC-Net gradually improves ini-
tially, reaching a saturation at UFC-Net-10, after which it
begins to decline, accompanied by a progressive increase
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Figure 3. Visual comparisons of reconstruction images and error maps of other five competing methods and our proposed UFC-Net under
noises when the sampling rate δ = 0.04. The first and second rows correspond to the reconstructed images and error maps respectively
when the Gaussian noise σ = 0.004. The third and fourth rows correspond to the reconstructed images and error maps respectively at the
salt and pepper noise ϵ = 0.98. Local areas are zoomed in for better comparisons.

in complexity. Therefore, it is a better choice to define the
number of iterative stages in reconstruction module as 10.

3.3. UFC-Net under Different Noises

This part is primarily dedicated to evaluating the robustness
of our proposed UFC-Net in the presence of varying levels
of noise. On the CIFAR10 dataset, we examine three types
of zero-mean Gaussian noise, characterized by distinct vari-
ance levels, denoted as σ ∈ {0.001, 0.002, 0.004}. Subse-
quently, we conduct comparative evaluations between our
UFC-Net and TransCS [12], DGUNet+ [11], OCTUF [14],
focusing on their Gaussian noise robustness at sampling
rates of 0.01 and 0.04. The outcomes are outlined in Tab.
2. It is evident that our UFC-Net consistently maintains
peak PSNR and SSIM values, significantly surpassing the
second-ranking OCTUF algorithm. For instance, UFC-Net
outperforms OCTUF by a substantial margin, enhancing
PSNR (percentage gains) by 0.65dB (∼3.69%) and SSIM
(percentage gains) by 0.0478 (∼15.57%) when σ = 0.002
and δ = 0.01.

Moreover, we study different levels of salt and pep-
per noise on the CIFAR100 dataset, expressed as ϵ ∈
{0.94, 0.96, 0.98}. We conduct a comparative analysis
in the Tab. 3 of DPC-DUN [13], CSformer [15], Auto-
BCS [3] and our UFC-Net regarding the salt and pepper
noise robustness at sampling rates of 0.01 and 0.04. From
the numerical results in the Tab. 3, our proposed UFC-

Net consistently exhibits superior performance. Particu-
larly, in comparison to the second-best algorithm, Auto-
BCS, our UFC-Net demonstrates a significant improvement
of 0.72dB (∼4.06%) in PSNR and a notable increase of
0.0424 (∼13.16%) in SSIM, when ϵ = 0.98 and δ = 0.01.
These results show that our UFC-Net can reconstruct high-
quality images even under the influence of different noises.

Furthermore, when δ = 0.04, we show the reconstructed
images and error maps of TransCS [12], DPC-DUN [13],
AutoBCS [3], CSformer [15], OCTUF [14] and our pro-
posed UFC-Net under Gaussian noise σ = 0.004, and the
salt and pepper noise ϵ = 0.98 respectively in Fig. 3. It can
be seen that our UFC-Net has higher visual performance
and lower reconstruction error.

Table 2. PNSR (dB) and SSIM comparisons of UFC-Net and state-
of-the-art methods with various Gaussian noise levels on dataset
CIFAR10 [7] at δ = {0.01, 0.04}.

σ δ
TransCS [12] DGUNet+ [11] OCTUF [14] UFC-Net

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

0.001 0.01 16.49 0.2946 15.23 0.2720 17.61 0.3073 18.26 0.3550
0.04 19.29 0.5746 19.41 0.5601 21.35 0.6278 21.66 0.6387

0.002 0.01 16.48 0.2945 15.20 0.2717 17.60 0.3070 18.25 0.3548
0.04 19.26 0.5728 19.41 0.5617 21.29 0.6253 21.60 0.6362

0.004 0.01 16.47 0.2939 15.13 0.2704 17.59 0.3067 18.24 0.3545
0.04 19.19 0.5690 19.40 0.5626 21.18 0.6201 21.50 0.6314



Table 3. PNSR (dB) and SSIM comparisons of UFC-Net and state-
of-the-art methods with various Salt and Pepper noise levels on
dataset CIFAR100 [7] at δ = {0.01, 0.04}.

ϵ δ
DPC-DUN [13] CSformer [15] AutoBCS [3] UFC-Net
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

0.98 0.01 14.64 0.2013 16.53 0.3004 17.74 0.3222 18.46 0.3646
0.04 16.72 0.3718 20.29 0.5667 21.25 0.6197 21.80 0.6325

0.96 0.01 14.32 0.1914 16.57 0.2999 17.74 0.3211 18.41 0.3612
0.04 16.03 0.3348 20.07 0.5520 21.01 0.6064 21.44 0.6147

0.94 0.01 14.08 0.1835 16.59 0.2990 17.73 0.3194 18.35 0.3581
0.04 15.45 0.3043 19.85 0.5387 20.77 0.5927 21.11 0.5983

Table 4. Comparisons of UFC-Net and its variants on dataset
Set11 at the sampling rate δ = 0.10.

Methods woT-RB woT-U woMA-RB woMA-U woAI-RB woAI-U UFC-Net
PSNR 29.68 29.64 29.82 29.63 29.78 29.59 30.15
SSIM 0.8883 0.8878 0.8911 0.8890 0.8887 0.8881 0.8960
LPIPS 0.0786 0.0796 0.0774 0.0787 0.0789 0.0787 0.0755

Table 5. Comparisons of UFC-Net with different loss functions on
different datasets at the sampling rate δ = 0.25.

Loss Function Set11 Set14 Urban100 General100
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

MSE Loss(default) 35.42 0.9567 33.81 0.9259 32.82 0.9423 37.75 0.9624
L1 Loss 35.31 0.9561 33.69 0.9258 32.72 0.9409 37.66 0.9622

Perceptual Loss 32.99 0.9423 31.33 0.9046 30.54 0.9242 35.20 0.9485

3.4. UFC-Net and Its Variants

We substitute MARB and AIRB in CAM with the standard
residual block and UNet, resulting in six variations: woT-
RB, woT-U, woMA-RB, woMA-U, woAI-RB, and woAI-
U. Among them, woT-RB means using the standard residual
block to replace the two blocks MARB and AIRB. Other
variants are obtained through similar approaches. Tab. 4
illustrates the comparison results on the dataset Set11 at
δ = 0.10. Our UFC-Net consistently exhibits optimal per-
formance and demonstrates significant improvement com-
pared to the second-best variant, providing evidence for the
superiority of our proposed MARB and AIRB.

3.5. UFC-Net with Different Loss Functions

We perform ablation studies on UFC-Net using various loss
functions, including Mean Squared Error (MSE), L1 loss,
and perceptual loss functions. As depicted in Tab. 5, UFC-
Net exhibits superior performance when using MSE func-
tion, while showing suboptimal results under the L1 loss
function.

3.6. UFC-Net under Perceptual Loss

As depicted in Tab. 6, we conduct a comparison of the
LPIPS metric between proposed UFC-Net and different
methods on datasets CIFAR10 and CIFAR100 at δ = 0.04.
The results consistently demonstrate that our UFC-Net out-
performs other methods on different datasets.

Table 6. LPIPS comparisons of UFC-Net and other methods at δ = 0.04.

Methods TransCS DGUNet+ DPC-DUN LTwIST AutoBCS CSformer OCTUF UFC-Net
CIFAR10 0.4247 0.1695 0.1692 0.3910 0.3910 0.1469 0.1416 0.1351

CIFAR100 0.4182 0.1722 0.1763 0.3816 0.3839 0.1496 0.1440 0.1376
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