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Supplementary Material

This supplementary includes ablation results of AMM-
Net with different image encoders (Sec. S1), comparison
results of using different feature fusion strategies (Sec. S2)
and different schemes for alleviating overfitting (Sec. S3),
and more visualization results (Sec. S4).

S1. Ablation with Different Image Encoder
This supplementary is for Sec. 5.5 of the main paper. To val-
idate the generalization ability of AMMNet, we supplement
the ablation study by substituting the SegFormer-B2 [40]
image encoder with the ResNet50 [16] or DeepLabv3 [3].
As Table S1 shows: 1) adopting the DeepLabv3 en-
coder pre-trained on image segmentation task achieves
the best performance, suggesting that enhanced semantic
understanding can better facilitate scene completion and
prediction of correct semantic categories. The stronger
SegFormer-B2 encoder also improves performance over
ResNet50, especially the semantic metric SSC-mIoU by
2.7% in the baseline model. This aligns with the fact
that superior visual features facilitate semantic prediction;
2) AMMNet maintains consistent performance gains over
baseline regardless of the choice of image encoder. Specif-
ically, using a ResNet50, AMMNet improves SC-IoU by
3.7% and SSC-mIoU by 2.3%. With a SegFormer-B2 en-
coder, the gains are even higher, reaching 4.0% and 2.4%
respectively. Notably, AMMNet also achieves considerable
improvements of 2.9% on SC-IoU and 1.5% on SSC-mIoU
with the DeepLabv3 encoder pre-trained on image segmen-
tation task. The consistent gains verify that AMMNet’s ro-
bust effectiveness stems from a better unleashing of the net-
work potentials, rather than reliance on specific encoders.

Methods Image Encoder SC-IoU SSC-mIoU

Baseline
ResNet50

70.3% 43.4%

AMMNet 74.0% (↑ 3.7%) 45.7% (↑ 2.3%)

Baseline Segformer

-B2

71.6% 46.1%

AMMNet 75.6% (↑ 4.0%) 48.5% (↑ 2.4%)

Baseline
DeepLabv3

73.4% 54.6%

AMMNet 76.3% (↑ 2.9%) 56.1% (↑ 1.5%)

Table S1. The ablation study of using different image encoder, in-
cluding ResNet50 [16], Segformer-B2 [40]), and DeepLabv3 [3],
in our AMMNet on the test set of NYU [31].

S2. Alternative Fusion Strategies
This supplementary is for Sec. 5.5 of the main paper. To
validate the efficacy of cross-modal modulation, we com-

pare it with several widely-adopted alternatives for fus-
ing multi-modal representations including addition, con-
catenation, refinement with SENet [18], refinement with
CBAM [39], and soft selection [34]. Experiments are con-
ducted by replacing all three modulation modules in AMM-
Net with each scheme. Due to the enormous computational
overhead of 3D tasks, we do not consider transformer-based
attention methods.

As Table S2 shows, simple fusion schemes like direct
addition or concatenation prove insufficient for optimally
exploiting cross-modal representations. Incorporating re-
finement as SENet [18] provides a slight 0.3% SSC-mIoU
improvement over the addition. Another alternative, dy-
namically selecting modalities via soft gating [34], provides
0.6% SSC-mIoU gain over baseline addition. Our proposed
cross-modal modulation obtains further noticeable perfor-
mance gains, elevating SSC-mIoU by 0.6% and SC-IoU by
0.8% over incorporating soft selection [34]. Experiments
validate cross-modal modulation facilitates more holistic
fusion to better discover synergistic cross-model potential.

Method Fusion Type SC-IoU SSC-mIoU

- Add 75.2% 47.3%

- Concat 75.0% 46.8%

SENet [18] Refine 74.2% 47.6%

CBAM [39] Refine 74.6% 47.4%

HighWay [34] SoftSelect 74.8% 47.9%

Ours Modulation 75.6% 48.5%

Table S2. Performance comparison of different feature fusion
schemes by replacing all three modulation modules in AMMNet
with each scheme respectively.

S3. Schemes to Alleviate Overfitting
This supplementary is for Sec. 5.5 of the main paper.
To examine the isolated impact of different schemes in

Method Removed Scheme SC-IoU SSC-mIoU

AMMNet† None 74.4% 47.7%

AMMNet† Dropout 74.7% (↑ 0.3%) 47.5% (↓ 0.2%)

AMMNet† Label Smooth 73.4% (↓ 1.0%) 47.3% (↓ 0.4%)

AMMNet† Data Augment(3D) 74.3% (↓ 0.4%) 47.4% (↓ 0.1%)

AMMNet† Data Augment(2D) 74.8% (↑ 0.1%) 47.0% (↓ 0.7%)

AMMNet† L(D,G) 71.6% (↓ 2.8%) 46.1% (↓ 1.6%)

Table S3. The ablation study of different schemes for alleviating
overfitting based on AMMNet† on the test set of NYU [31].
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Figure S1. Visualization results for ablation study based on the test set of NYU [31]. The proposed cross-modal modulation M (in (d))
and adversarial training scheme L(D,G) (in (e)) improve the baseline with better volumetric occupancy and semantics. Combining both (in
(f)) achieves the best results.
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Figure S2. More qualitative comparisons on challenging indoor scenes from the test set of NYU [31] with state-of-the-art methods,
including SSCNet [32], 3D-Sketch [4], and CleanerS [37].

alleviating overfitting, we ablate different modules from
the AMMNet†, where all cross-modal modulation mod-
ules are removed. Schemes analyzed include dropout, la-
bel smoothing, 2D/3D data augmentation, and our adver-
sarial training scheme L(D,G). As Table S3 reports, remov-
ing most regularizers causes minor performance drops, con-
firming their auxiliary effects. Specifically, simple schemes
like dropout exhibit weaker regularization power, as evalu-

ated by the minor 0.2% SSC-mIoU drop when excluded.
Meanwhile, complementary strategies like label smooth-
ing [35] (0.4% SSC-mIoU drop) and 2D/3D augmentation
(0.1%/0.7% SSC-mIoU reduction) help prevent learned bi-
ases and memorization. Findings confirm the necessity of
strong regularization guided by domain insights.

Notably, excluding our L(D,G) degrades results substan-
tially by 2.8% in SC-IoU and 1.6% SSC-mIoU. This veri-



fies the vital role of our custom adversarial training scheme
in alleviating overfitting. We advise blending it with exist-
ing methods like augmentation and label smoothing [35] to
maximize performance.

S4. More Visualization Results

This supplementary is for Sec. 5.4 and Sec. 5.3 of the main
paper. As Figure S1 shows, incorporating the proposed
cross-modal modulation M (in (d)) improves semantic per-
ception over the baseline (in (c)), correcting erroneous pre-
dictions. Building on this, additionally introducing adver-
sarial training (our AMMNet in (f)) further unleashes model
potentials, attaining high-fidelity outputs better approximat-
ing the ground truth voxels (in (g)). In Figure S2, we sup-
plement more visual examples compared to state-of-the-art
methods.
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