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9. Implementation Details
We set λ1 = 1e−3, λ2 = 1e−4 in Eq. 10, n = 10,
σ2 = 5e−5 in Eq. 2 and h = 0.15 in Eq. 9 for all exper-
iments. Our experiments show that more training iterations
lead to better results, which is a common phenomenon in
many unsupervised learning settings. In this work, we set
the maximum number of training iterations to 40,000 (one
iteration means forward and back-propagation computation
of one input image), which balances result quality and train-
ing time/energy cost.

10. Number of Bases of the Shape Space Model

Figure 10. NME on CELEBA WILD for different number of basis
of space shape model.

We conduct an ablation study on the number of bases
of the shape model on CELEBA WILD, see Fig. 10. We
observe that once the number of bases is sufficiently large
(above 5-6 in this case), the error (NME) remains constant,
indicating that the variability of this object category is suf-
ficiently explained.

11. Results on HUMAN3.6M Dataset
As explained in the main paper, our approach is less effec-
tive for the HUMAN3.6M dataset due to large pose varia-
tions and articulation. Nevertheless, for the sake of com-

pleteness, we include additional quantitative experiments
using the HUMAN3.6M dataset, which can serve as base-
line for future works. The normalized mean error (NME) is
used as evaluation for a varying number of keypoints, which
we show in Table 5.

K=8 K=16 K=24 K=32

0.837 0.487 0.446 0.392

Table 5. NME on HUMAN3.6M dataset for different number of
keypoints.

12. Shape Synthesis
By varying the coefficients of a specific basis vector of the
learned space shape model, we can synthesize new shapes.
Fig. 11 illustrates this for one instances of the HORSE
dataset.

Figure 11. Animation of a horse shape by varying the coefficient
of a basis vector of the learned space shape model.

13. Analysis of Space Shape Model
As specified in Sec. 9, we set the number of basis n = 10
for all experiments. In order to visualize the effectiveness
of the space space model, we show the 3D shape with an
increasing number of basis functions, i.e. M + α1 × B1,
M + α1 × B1 + α2 × B2, . . ., where αi and Bi are the
i-th coefficient and basis vector, respectively. Fig. 12 and
Fig. 13 visualize this process.

From Fig. 12 and Fig. 13 we observe that, for human
faces the mean shape already captures most shape informa-
tion, with small deformations caused by bases. Instead, for
horses the bases take the main role to represent the shape.
The reason may be that human faces are relatively rigid,
while horses have stronger deformations stemming from ar-
ticulations, which can, to some extent, be explained by the
bases of our space shape model.



Fig. 14 shows results on the CELEBA WILD dataset
trained with the space shape model only consisting of a
mean shape. We can see that these 3D shapes are still rea-
sonable and captures the shape of the human faces, which
confirms our statements in the last paragraph.

14. Influence of h in the Repulsion Loss Lrep

The repulsion loss Lrep defined in Eq. (9) is used to penalize
keypoints within 2D space that are too close to each other.
The temperature parameter h in Lrep controls the definition
of ”closeness”. More specifically, the smaller the h, the
less penalization for close keypoints. Thus small h may
result in a degenerate solution where all keypoints converge
in a small region, while large h may result in all keypoint
diverging from each other and cannot capture the detailed
structure of the object. Thus the choice of h depends on the
category of object, as well as the number of keypoints.

Fig. 15 gives results for various choices of h on the
CELEBA WILD dataset. From the results we can conclude
that too small h result in clustered keypoints and cannot
cover the full object (the first row of Fig. 15); while too large
values of h result in points distributing in the whole image
space, thus lacking details in specific areas (the fourth and
fifth rows in Fig 15).

15. Video Results
We provide additional animation videos of 3D shapes from
several datasets, which visualize the 3D shapes and rota-
tions more clearly.

16. More Qualitative Results
Fig. 16 to Fig. 23 give more qualitative results on the
CELEBA WILD, CUB-200-2011, HORSE and AFHQ
(several subsets) datasets.



Figure 12. We visualize the effectiveness of our 3D shape space model on the CELEBA WILD dataset. From top to bottom, from left to
right, we visualize the 3D shape of M , M +α1 ×B1, M +α1 ×B1 +α2 ×B2, . . ., until we get the full 3D shape M +

∑n
i=1 αi ×Bi.

(Shapes are also transformed and scaled using rotation R, translation T and scaling factor s)

Figure 13. We visualize the effectiveness of of our 3D shape space model on the HORSE dataset. From top to bottom, from left to right, we
visualize the 3D shape of M , M + α1 ×B1, M + α1 ×B1 + α2 ×B2, . . ., until we get the full 3D shape M +

∑n
i=1 αi ×Bi. (Shapes

are also transformed and scaled using rotation R, translation T and scaling factor s)



Figure 14. Visualization of 3D shapes of CELEBA WILD dataset trained with 3D space shape model only consisting of mean shape.

Figure 15. Visualization of 3D structure on CELEBA WILD dataset for various choice of h = 0.05, 0.1, 0.25, 0.5, 0.75 (from top rows to
bottom rows).



Figure 16. Qualitative results on CELEBA WILD (keypoints number K = 32).

Figure 17. Qualitative results on CAT from AFHQ (keypoints number K = 32).



Figure 18. Qualitative results on CHEETAH from AFHQ (keypoints number K = 32).

Figure 19. Qualitative results on CUB-200-2011 (keypoints number K = 32).



Figure 20. Qualitative results on TIGER from AFHQ (keypoints number K = 32).

Figure 21. Qualitative results on HORSE (keypoints number K = 32).



Figure 22. Qualitative results on DOG from AFHQ (keypoints number K = 32).

Figure 23. Qualitative results on FOX from AFHQ (keypoints number K = 32).
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