
VGGSfM: Visual Geometry Grounded Deep Structure From Motion
– Supplementary Material –

Jianyuan Wang1,2 Nikita Karaev 1,2 Christian Rupprecht1 David Novotny2

1Visual Geometry Group, University of Oxford 2Meta AI

The supplementary material includes: (1) additional im-
plementation details for network architectures and training
hyperparameters; and (2) more ablation studies along with
discussions.

1. Implementation Details
Training As discussed in the main manuscript, the train-
ing process involves multiple stages. We first train the
tracker T on the synthetic Kubric dataset, then separately
train the tracker T, camera initializer TP , and triangula-
tor TX on Co3D or MegaDepth, and finally jointly train
the whole framework on Co3D or MegaDepth. We use the
AdamW [13] optimizer with a cyclic learning rate sched-
uler [20] where each cycle spans 30 epochs. The learning
rate is 0.0001 for the joint training phase and 0.0005 for
all prior stages. We train the model on 32 NVIDIA A100
(80GB) GPUs until convergence. The batch size varies for
each iteration because we randomly sample 3 to 30 frames
for each scene (batch) as in [23]. The training on the syn-
thetic Kubric dataset takes about one day. The separate
training of the tracker T, camera initializer TP , and trian-
gulator TX takes two days, two days, and one day respec-
tively. The final joint training takes one day. For training,
we track 256 query points and run bundle adjustment for 5
optimization steps. We use gradient clipping to ensure sta-
ble training, which constrains the gradients’ norm to a max-
imum value of 1. Additionally, we normalize the ground-
truth cameras in the same way as in [23], and the point cloud
correspondingly.

Moreover, we augment the samples using a combina-
tion of augmentation transformations. This includes color
jittering (brightness, contrast, saturation, and hue) with a
65% probability, Gaussian Blur with a 50% probability, and
a 15% chance of converting images to grayscale. Please
note that different frames from a single scene will receive
different augmentations. Images are resized to 512 × 512
with zero padding. Ground truth tracks that remain invisi-
ble in over 50% of the frames are excluded from the train-
ing for the tracker T. For the MegaDepth dataset, similar

to [12, 18], we construct the training batches by only sam-
pling frames with an overlap score with the query frame
exceeding 0.1. Here, overlap scores are derived from the
pre-processing steps outlined in [7].
Inference Time On a single NVIDIA A100 80GB GPU,
given 25 frames and 4096 query points, the inference of
the tracker, camera initializer, and triangulator takes around
4.3, 0.9, and 0.2 seconds respectively. In comparison, the
popular pairwise matching variant SuperPoint + SuperGlue
usually takes around 20 seconds. In the bundle adjustment
process, each optimization step requires approximately 0.7
seconds. For each run of the whole reconstruction function
fθ (as discussed in the main manuscript, fθ is run multiple
times until reaching sub-pixel BA reprojection error), bun-
dle adjustment is executed for 30 steps, unless early conver-
gence is achieved.
Tracker We use the 2D convolutional architecture from
[8, 11] as the backbone of our tracker. Specifically, for the
coarse tracker, this structure consists of an initial convolu-
tional layer with a 7× 7 kernel and stride of 2, followed by
eight residual blocks with 3 × 3 kernels and instance nor-
malization. Finally, the architecture concludes with a pair of
convolutional layers, one using a 3×3 kernel and the other a
1×1 kernel. This backbone outputs a 128-dimensional fea-
ture map reducing the spatial resolution by a factor of 8. We
use 5 levels of correlation pyramids where each level uses
a correlation radius of 4. Therefore, the tokens (flattened
cost volume) V ∈ RNT×NI×C have a feature dimension of
C = 5× (2× 4 + 1)2 = 405. The tokens are subsequently
processed by a transformer with eight self-attention layers
with a hidden dimension of 512 and 8 heads. Finally, a
multilayer perceptron (MLP) is applied to predict the point
location y, visibility v, and inverse confidence σ. The ar-
chitecture uses GELU activation functions.

The architecture of the fine tracker is similar to the coarse
tracker but shallower. The backbone of the fine tracker con-
sists of one 3×3 convolution layer, two residual blocks with
3×3 kernels and instance normalization, and one 1×1 con-
volution layer. The correlation pyramid of the fine tracker



Images

Track Feature Cross 
Attention

Key
Value

backbone Image Feature

Query

Trunk
Transformer

Embedding of
Preliminary Cameras

Camera
Parameters

Camera 
Initializer

Figure 1. Architecture of Camera Initializer. Generally, we use
the image features, track features, and the harmonic embedding
of preliminary cameras to predict camera parameters. These pa-
rameters, represented in an NI × 8 matrix, comprise a quaternion
(4 dimensions), a translation vector (3 dimensions), and a focal
length (1 dimension).

uses 3 levels and each level uses a radius of 3, which leads
to tokens with a feature dimension of 3 × (2 × 3 + 1)2 =
147. The shallow transformer uses four self-attention lay-
ers, with a hidden dimension of 384 and 4 heads.

Following [8, 11], we train the tracker with 4 iterative
updates and evaluate it with 6 iterative updates.

Camera Initializer The camera initializer (Fig. 1) takes
frames I and track features dP as input, and outputs initial
cameras P̂ . We extract features from the input images in a
multi-scale manner as in [23]. However, we use ResNet [9]
instead of DINO [2] as the camera initializer backbone, be-
cause we empirically found that DINO is harder to train
jointly with other components. Each image is mapped to
a 512-dimensional feature vector ϕ(Ii). Since the track
features carry information about the image-to-image corre-
spondence which provides grounding for camera-pose es-
timation, we fuse the stack of track features dP(y), with
shape NT × NI × 256, into the NI × 512 image features
ϕ(I) with 4 cross-attention layers with 4 heads. This results
in a NI × 512 global image descriptor.

Similar to the tracker, we adopt an iterative update mech-
anism inside the camera initializer. For each update, we ob-
tain a set of 8-dimensionsal preliminary camera representa-
tions and map them to 128 dimensions with a positional har-
monic embedding [14]. We then concatenate the global im-
age descriptors and the embedding of the preliminary cam-
eras, use an MLP to project the concatenated features to 512
dimensions, and feed the latter to a trunk transformer. The
trunk transformer consists of 8 self-attention layers (trans-
former encoder) with 4 heads, whose hidden dimension is
512. The trunk transformer’s output is further processed
with another MLP layer, which predicts the camera param-
eters. This procedure is repeated four times. In the first run,
the preliminary cameras are derived from each frame’s rel-
ative camera pose to the query frame, which is computed
from tracks using the 8-point algorithm. Following the ap-
proach of COLMAP [19], the focal lengths are initialized
based on the longer side of the image size. In subsequent

Triangulator
Camera

Parameters
TracksMulti-view DLT

Camera Rays Preliminary 
Point Cloud

Point-to-Ray 
Distance

Positional 
Encoding

Trans
former

Track Feature

Point Cloud

Figure 2. Architecture of Triangulator. We first estimate a pre-
liminary point cloud using the camera parameters and tracks. Sub-
sequently, we calculate the distance from this preliminary point
cloud to all camera rays, as well as identify the nearest points on
these rays. This information (along with the preliminary point
cloud) is concatenated to the track features and fed into a trans-
former to predict the point cloud X̂ .

runs, the preliminary cameras (intrinsic and extrinsic) are
the result of the previous prediction. In this process, the
trunk transformer is run four times while the feature back-
bone is only run once.

It is noteworthy that the traditional 8-point algorithm is
commonly used in conjunction with RANSAC to filter out
noisy matches. In our approach, we employ a batched 8-
point algorithm to approximate a similar effect to RANSAC
while avoiding a time-consuming for loop. For each scene,
we randomly select 20 sets, each comprising 50 point pairs.
We then apply the 8-point algorithm to these sets in parallel,
yielding 20 relative camera poses. Similar to RANSAC, we
calculate the inlier count for each camera pose candidate us-
ing all available point pairs. A point pair is considered as an
inlier if its Sampson epipolar error is less than 0.6 divided
by the image width in pixels. Ultimately, the camera pose
candidate with the highest number of inliers is selected.

Triangulator Given camera parameters and tracks, the
triangulator (Fig. 2) TX initially estimates a preliminary
point cloud X̄ (of size NT × 3) using a closed-form multi-
view Direct Linear Transform (DLT) for 3D triangulation.
Furthermore, for each frame and the corresponding 2D
point, a camera ray is computed. The distance from this
camera ray to the associated 3D point in X̄ , along with the
nearest point on the camera ray, are calculated. This results
in the preliminary point cloud X̄ with shape NT ×3, the ray
distance with shape NT ×NI×1 and nearest points to cam-
era rays of shape NT ×NI ×3. These vectors are then con-
catenated (resulting in a tensor of shape NT ×NI × 7) and
embedded into a 256-dimensional space (NT ×NI × 256)
through positional encoding. The embedded vectors are fur-
ther concatenated with the track feature dP(y), leading to
a shape of NT × NI × 512. Averaging over the NI di-
mension yields a descriptor for the point cloud with dimen-
sions NT × 512. This descriptor is input into a transformer
comprising 4 self-attention layers, each with 4 heads and
a hidden dimension of 384. The output of the transformer



w/o Filtering w/o BA Ours

AUC@10◦ 2.31 18.34 73.92
RRE@5◦ 8.17 70.25 95.61
RTE@5◦ 5.42 39.42 81.03

Table 1. Ablation Study for Bundle Adjustment. We try the set-
ting without using bundle adjustment, or using bundle adjustment
but not filtering the correspondences.

is processed by a two-layer MLP (the hidden dimension is
256) to estimate X̂ .

Outlier Filtering It is important to filter out noisy cor-
respondences in SfM, especially for BA optimization. For
our framework, first, we drop 2D points with a visibility
score v < 0.6 or variance σ > 1 (horizontally or vertically).
Then, we use the preliminary cameras estimated by the 8-
point algorithm and the initial cameras P̂ to remove corre-
spondences with a Sampson epipolar error of more than 0.8
divided by the image width. Following Bundler [21] and
COLMAP[19], we also require that at least one pair within
each track has a triangulation angle of more than 3 degrees.
Otherwise, the track (and the associated 3D point) is dis-
carded. Moreover, for bundle adjustment, the 2D points
with a reprojection error of more than 3 pixels are removed.
Tracks with less than 3 points are discarded as well. It is
worth mentioning that Homography verification [19] does
not seem to be important for our framework, although it is
common in incremental SfM.

2. Discussions and Ablation

Global SfM As discussed in the Related Work section of
the main manuscript, there are two popular approaches for
SfM: incremental and global. Global SfM approaches [1, 3–
6, 10, 15–17, 22] usually predict the parameters for all the
cameras at the same time and only perform bundle adjust-
ment once. These methods often use rotation averaging and
translation averaging to align pairwise relative camera poses
into a consistent coordinate system. Our proposed method
bears similarities to global SfM. However, it diverges in sev-
eral key aspects: (1) unlike global SfM, which relies on
pairwise matching (akin to incremental SfM), our method
directly predicts tracks; (2) instead of rotation averaging
and translation averaging in global SfM, we use a learnable
network to predict camera parameters; (3) we iteratively ap-
ply the reconstruction function multiple times during test-
ing, with bundle adjustment at each iteration. Besides these
differences, our method is complementary to global SfM.

Bundle Adjustment Bundle adjustment is a key compo-
nent for accurate SfM. As shown in Tab. 1, without bun-
dle adjustment, we observe a clear performance drop, with
AUC@10 from 73.92 to 18.34. BA is also known to be
strongly susceptible to noisy inputs. Indeed, using bun-

dle adjustment without track filtering (described in previ-
ous paragraphs) destroys the estimate and, as such, reduces
the AUC@10 nearly to zero. Notably, even without bun-
dle adjustment, our framework’s estimation remains rela-
tively robust; for instance, the rotation errors for over 70%
of image pairs remain within 5 degrees (RRE@5◦ > 70%).
However, executing bundle adjustment without track fil-
tering results in incorrect optimization of camera param-
eters, whose RRE@5◦ is also just around 8%. At the
same time, please note that all the methods in Table 2 of
the main manuscript use bundle adjustment or its approx-
imation. For example, PoseDiffusion [23] uses geometry-
guided sampling and DeepSfM [24] adopts a special form
of bundle adjustment. Without geometry-guided sampling,
the AUC@10 of PoseDiffusion is around 11%.

Track Error Distribution We present a histogram in
Fig. 3 to depict the distribution of tracking errors for the
scene British Museum 10 bag 000 within the IMC dataset,
consisting of 10 images. As indicated, the distribution’s
peak, represented by the orange dashed line, approximately
aligns with 0.4 pixels, while the median, depicted by the
blue dash-dotted line, is around 0.6 pixels. Notably, most
of the tracking predictions maintain an error margin of less
than 3 pixels, highlighting the accuracy of our method.
Some predictions even approach a near-zero error margin.
Invisible points (e.g., occluded or outside the view) are not
included in this histogram.

Video Tracking To verify the effect of our proposed
tracker, we also try to use the video tracking method PiPs
inside our framework. The results, presented in Table 2, re-
veal a noticeable decline in performance when using PiPs

Error (Pixel)

Pe
rc

en
ta

ge
 (%

)

Figure 3. Histogram of Tracking Errors of the scene British Mu-
seum 10 bag 000 on the IMC dataset. The horizontal axis denotes
error in pixels, while the vertical axis shows the percentage (%)
for each bin.



AUC@10◦ RRE@5◦ RTE@5◦

PiPs [8] 43.27 82.15 51.39
Our Trakcer 73.92 95.61 81.03

Table 2. Ablation Study for Tracking. We try the video tracking
method PiPs [8] in our framework, which shows a clear perfor-
mance drop .

as opposed to our tracker. This contrast underlines the ef-
fectiveness of our proposed tracking solution.
Failure Cases Our method seldom fails entirely for a
scene, but it may struggle with specific images where clas-
sical SfM also fails. The latter includes symmetric objects
(e.g., Co3D apples) or “doppelgangers” (e.g., IMC Piazza
San Marco). We can follow classical SfM to detect failure
cases, e.g., BA-reprojection or Sampson error. A low track-
ing confidence can also indicate failure.
Scalability Our model can currently reconstruct 80-120
frames on a single A100 GPU. The main bottleneck is the
GPU memory of Transformer blocks. While Transformer
can handle arbitrary numbers of input frames, its memory
scales quadratically with input size. In practice, using 2×
frames will require ∼ 3.3× GPU memory.

There are several directions to enhance scalability. For
example, following recent advancements in NLP, we can
leverage Transformer with linear memory complexity (such
as Mamba) to reduce GPU consumption. Additionally, us-
ing mixed precision or reconstructing with sliding window
can be considered. We remark that scalability is a cru-
cial aspect of SfM, but is not the primary focus of our pa-
per. Given the classical SfM pipeline also originated from
dozens of pictures, we are humbly satisfied with processing
∼100 frames for now. We plan to extend the input size in
our future work.

References
[1] Mica Arie-Nachimson, Shahar Z Kovalsky, Ira

Kemelmacher-Shlizerman, Amit Singer, and Ronen
Basri. Global motion estimation from point matches. In
2012 Second international conference on 3D imaging,
modeling, processing, visualization & transmission, pages
81–88. IEEE, 2012. 3

[2] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou,
Julien Mairal, Piotr Bojanowski, and Armand Joulin. Emerg-
ing properties in self-supervised vision transformers. In Pro-
ceedings of the IEEE/CVF international conference on com-
puter vision, pages 9650–9660, 2021. 2

[3] David J Crandall, Andrew Owens, Noah Snavely, and
Daniel P Huttenlocher. Sfm with mrfs: Discrete-continuous
optimization for large-scale structure from motion. IEEE
transactions on pattern analysis and machine intelligence,
35(12):2841–2853, 2012. 3

[4] Hainan Cui, Xiang Gao, Shuhan Shen, and Zhanyi Hu.
Hsfm: Hybrid structure-from-motion. In Proceedings of the

IEEE conference on computer vision and pattern recogni-
tion, pages 1212–1221, 2017.

[5] Zhaopeng Cui and Ping Tan. Global structure-from-motion
by similarity averaging. In Proceedings of the IEEE Inter-
national Conference on Computer Vision, pages 864–872,
2015.

[6] Zhaopeng Cui, Nianjuan Jiang, Chengzhou Tang, and Ping
Tan. Linear global translation estimation with feature tracks.
arXiv preprint arXiv:1503.01832, 2015. 3

[7] Mihai Dusmanu, Ignacio Rocco, Tomas Pajdla, Marc Polle-
feys, Josef Sivic, Akihiko Torii, and Torsten Sattler. D2-
net: A trainable cnn for joint description and detection of
local features. In Proceedings of the ieee/cvf conference on
computer vision and pattern recognition, pages 8092–8101,
2019. 1

[8] Adam W Harley, Zhaoyuan Fang, and Katerina Fragkiadaki.
Particle video revisited: Tracking through occlusions using
point trajectories. In ECCV, 2022. 1, 2, 4

[9] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 2

[10] Nianjuan Jiang, Zhaopeng Cui, and Ping Tan. A global lin-
ear method for camera pose registration. In Proceedings of
the IEEE international conference on computer vision, pages
481–488, 2013. 3

[11] Nikita Karaev, Ignacio Rocco, Benjamin Graham, Natalia
Neverova, Andrea Vedaldi, and Christian Rupprecht. Co-
Tracker: It is better to track together. 2023. 1, 2

[12] Philipp Lindenberger, Paul-Edouard Sarlin, and Marc Polle-
feys. Lightglue: Local feature matching at light speed. arXiv
preprint arXiv:2306.13643, 2023. 1

[13] Ilya Loshchilov and Frank Hutter. Decoupled weight decay
regularization. arXiv preprint arXiv:1711.05101, 2017. 1

[14] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,
Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view syn-
thesis. Proc. ECCV, 2020. 2

[15] Pierre Moulon, Pascal Monasse, and Renaud Marlet. Global
fusion of relative motions for robust, accurate and scalable
structure from motion. In Proceedings of the IEEE inter-
national conference on computer vision, pages 3248–3255,
2013. 3

[16] Onur Ozyesil and Amit Singer. Robust camera location esti-
mation by convex programming. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pages 2674–2683, 2015.

[17] Rother. Linear multiview reconstruction of points, lines,
planes and cameras using a reference plane. In Proceedings
Ninth IEEE International Conference on Computer Vision,
pages 1210–1217. IEEE, 2003. 3

[18] Paul-Edouard Sarlin, Daniel DeTone, Tomasz Malisiewicz,
and Andrew Rabinovich. Superglue: Learning feature
matching with graph neural networks. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 4938–4947, 2020. 1



[19] Johannes Lutz Schönberger and Jan-Michael Frahm.
Structure-from-motion revisited. In Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2016. 2, 3

[20] Leslie N Smith and Nicholay Topin. Super-convergence:
Very fast training of neural networks using large learn-
ing rates. In Artificial intelligence and machine learning
for multi-domain operations applications, pages 369–386.
SPIE, 2019. 1

[21] Noah Snavely, Steven M Seitz, and Richard Szeliski. Photo
tourism: exploring photo collections in 3d. In ACM siggraph
2006 papers, pages 835–846. 2006. 3

[22] Chris Sweeney, Torsten Sattler, Tobias Hollerer, Matthew
Turk, and Marc Pollefeys. Optimizing the viewing graph for
structure-from-motion. In Proceedings of the IEEE interna-
tional conference on computer vision, pages 801–809, 2015.
3

[23] Jianyuan Wang, Christian Rupprecht, and David Novotny.
Posediffusion: Solving pose estimation via diffusion-aided
bundle adjustment. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, pages 9773–9783,
2023. 1, 2, 3

[24] Xingkui Wei, Yinda Zhang, Zhuwen Li, Yanwei Fu, and Xi-
angyang Xue. Deepsfm: Structure from motion via deep
bundle adjustment. In Computer Vision–ECCV 2020: 16th
European Conference, Glasgow, UK, August 23–28, 2020,
Proceedings, Part I 16, pages 230–247. Springer, 2020. 3


	. Implementation Details
	. Discussions and Ablation

