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8. Training Details for VideoRF
8.1. Coarse Stage Pre-training and Baking

Given a long-duration multi-view sequence, we initially
adopt the approach from DVGO [55] to generate an ex-
plicit density volume grid Vσ and color feature grids Vc

representation for each frame t. Following ReRF [65], we
employ a global MLP Φc during this coarse stage training.
This MLP comprises a single hidden layer with 129 chan-
nels, and we set the color feature dimension at h = 12.
Throughout the training, we incrementally upscale the vol-
ume grid, from (125×125×125) → (150×150×150) →
(200×200×200) → (250×250×250), after reaching the
training step 2000, 4000 and 6000, respectively. For loss
calculation, we utilize both the photometric MSE loss and
the total variation loss on Vσ , expressed as:
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zv, (10)

Lcoarse = Lrgbcoarse
+ λTVLTVcoarse , (11)

where λTV = 0.000016. Here, R represents the set of train-
ing pixel rays, with c(r) and ĉ(r) denoting the actual and
predicted colors of a ray r, respectively. ∆2

x,y,zv signifies
the squared difference in the voxel’s density value. Notably,
the total variation loss is activated only during the training
iterations from 1000 to 12000. For optimization, we uti-
lize the Adam optimizer for training 16000 iterations with
a batch size of 10192 rays. The learning rates for Vσ , Vc

and global MLP are 0.1, 0.11 and 0.002, respectively.
Once we obtain the density grid Vt

σ for each frame t in
the coarse training phase, we generate a per-frame occu-
pancy grid Ot by retaining voxels with a density above the
threshold γ = 0.003. During our adaptive grouping stage,
we set the pixel limit to θ = 512× 512.

8.2. Fine-grained Sequential Training

After creating the mapping tables, we proceed to fine-
grained sequential training within each group. At this stage,
we also introduce a global tiny MLP Φf designed for effi-
cient rendering on mobile platforms. This minimal MLP
Φf consists of only one hidden layer with 16 channels, and
we maintain the color feature dimension h at 12. Similar
to the coarse stage, we progressively upscale the volume

Figure 9. Our VideoRF facilitates dynamic radiance field render-
ing on ubiquitous devices, from desktops to mobile phones.

grid during training, moving from (125 × 125 × 125) to
(150 × 150 × 150), then to (200 × 200 × 200), and fi-
nally to (250 × 250 × 250), corresponding to the training
steps at 2000, 4000, and 6000, respectively. For loss cal-
culations, we employ both the photometric MSE loss and
the total variation loss on the density volume Vσ , as well
as spatial consistency loss and temporal consistency loss on
the feature image I:

Lrgbfine
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∑
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∥c(r)− ĉ(r)∥2, (12)
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Lspatial =
1

|P|
∑
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(∆u(p) + ∆v(p)) , (14)

Ltemporal = ∥It − It−1∥1, (15)

Lfine = Lrgbfine
+ λTVLTVfine + λsLspatial + λtLtemporal,

(16)
where λTV = 0.000016, λs = 0.0001 and λt = 0.0001. The
total variation loss is specifically activated during training
iterations 1000 to 12000. We continue to use the Adam
optimizer for 16000 iterations with a batch size of 10192
rays. The learning rates for Vσ , Vc, and the global MLP
are set to 0.1, 0.11, and 0.002, respectively.

9. Implementation Details for VideoRF Player
During the codec process of our player, the 2D density map
and each feature map channel are considered as single chan-
nel images. These images are normalized and quantized



best second-best
Method Metric 20 50 100 250 500 1000

HumanRF
↓ LPIPS 0.120 0.138 0.135 0.151 0.155 0.160
↑ PSNR 31.02 30.26 30.25 28.98 29.50 29.19
↑ SSIM 0.893 0.888 0.896 0.888 0.885 0.881

TiNeuVox
↓ LPIPS 0.352 0.298 0.406 0.430 0.436 0.452
↑ PSNR 27.51 26.62 24.13 22.98 22.30 21.28
↑ SSIM 0.782 0.791 0.760 0.752 0.751 0.747

NDVG
↓ LPIPS 0.240 0.281 0.354 0.435 0.453 0.481
↑ PSNR 28.76 25.83 23.13 21.17 20.05 17.83
↑ SSIM 0.841 0.812 0.763 0.731 0.724 0.692

HyperNeRF
↓ LPIPS 0.233 0.250 0.275 0.322 0.374 0.388
↑ PSNR 25.75 26.53 25.96 24.85 23.29 23.04
↑ SSIM 0.827 0.818 0.800 0.777 0.758 0.761

NeuralBody
↓ LPIPS 0.288 0.333 0.354 0.368 0.396 0.429
↑ PSNR 27.51 25.88 27.18 25.30 24.81 25.68
↑ SSIM 0.804 0.777 0.739 0.762 0.745 0.668

TAVA
↓ LPIPS 0.261 0.303 0.341 0.410 0.467 0.504
↑ PSNR 28.47 26.93 25.83 24.28 23.13 22.21
↑ SSIM 0.820 0.801 0.782 0.749 0.721 0.704

MeRF
↓ LPIPS 0.278 0.276 0.259 0.271 0.272 0.263
↑ PSNR 28.24 28.19 27.24 27.22 27.31 27.68
↑ SSIM 0.783 0.791 0.815 0.807 0.805 0.814

ReRF
↓ LPIPS 0.297 0.296 0.297 0.296 0.292 0.294
↑ PSNR 28.69 28.51 28.55 28.33 28.12 27.73
↑ SSIM 0.834 0.828 0.827 0.836 0.836 0.841

Ours
↓ LPIPS 0.276 0.285 0.283 0.278 0.274 0.275
↑ PSNR 29.14 28.79 28.81 28.46 28.50 28.32
↑ SSIM 0.840 0.835 0.830 0.838 0.840 0.844

Table 3. Quantitative comparison on long-duration sequence. We
evaluate on the Actor 3, Sequence 1 of the Actors-HQ Dataset.

into 8-bit depth. The H.264 encoder converts these im-
ages into the yuvj444p color space for hardware compati-
bility. During decoding, the data is converted back from the
yuvj444p color space to single-channel images with 8-bit
depth. Meanwhile, we adopt a multi-resolution occupancy
grid to bypass empty 3D spaces at various levels. This
approach significantly reduces unnecessary network infer-
ences during the ray marching process. The largest occu-
pancy grid is derived from max-pooling the full-resolution
binary mask. Each subsequent grid is designed to be half the
resolution of its predecessor. For instance, considering our
full-resolution binary mask is of size 288×288×288, our
multi-resolution occupancy grids follow suit with sizes of
144×144×144, 72×72×72, 36×36×36, 18×18×18, and
9×9×9.

10. Additional Experiments
As illustrated in Fig. 9, our method can enable dynamic
radiance field rendering on a wide range of devices, includ-
ing desktops (an i7-12700F CPU and NVIDIA RTX3090
GPU), laptops (an i5-1135G7CPU and Integrated GPU),
tablets (iPad Pro, an M2 chip) and mobile phones (iPhone
14 Pro, an A16 Bionic chip).
Long-duration dynamic scenes. Following the approach

Figure 10. Qualitative comparison on the long-duration sequence
against recent dynamic scene reconstruction methods and per
frame static reconstruction methods.

Components Size(KB)
Feature Images 661.62
3D to 2D Mapping Table 2.58
Occupancy Images 2.18
MLP Parameters 3.40
Total Size 669.78

Table 4. Storage of different components. The result is averaged
over a sequence of Kpop scene from ReRF [65] dataset.

in HumanRF [18], we assess performance on a long-
duration sequence (Actor3, sequence1, 1000 frames) from
the Actors-HQ dataset. We compare our method with ReRF
[65] and MeRF [50] through per-frame static reconstruc-
tion in Fig. 10. Our method keeps a small storage to en-
able streaming while maintaining a high rendering quality.
We adopt the testing methods outlined in HumanRF. The
performance metrics for HumanRF [18], TiNeuVox [11],
NDVG [16], HyperNeRF [43], NeuralBody [45], TAVA
[28] are directly sourced from the HumanRF publication.
As shown in Fig. 10 and Tab. 3, our approach demonstrates
its capability to sustain high photorealism which is only
second to HumanRF throughout long-duration sequences.
Note that, our VideoRF is the only method to enable ren-
dering dynamic scenes on mobile platforms.

Storage of different components analysis. We present
the storage requirements of each VideoRF component in
Tab. 4. This encompasses the average file sizes for sev-
eral key elements: the feature images for model detail, 3D-
to-2D mapping table, occupancy images used to efficiently
skip over empty spaces, and MLP parameters for the neu-
ral network. Note that our model’s total average size is
a mere 669.78KB. This compact representation facilitates
rapid streaming across various devices.

11. Limitation and Future Work

As the first trial to enable a real-time dynamic radiance field
approach capable of decoding and rendering on mobile de-



vices, our approach presents certain limitations. On aver-
age, training each frame takes approximately 20 minutes
using a single NVIDIA RTX3090 GPU. This includes about
5 minutes for coarse training, less than 1 second for the
baking stage, and around 14 minutes for the fine-grained
sequential training. Fortunately, our coarse training stage
can be parallel for each frame, and fine-grained sequential
training can be parallel across groups. Consequently, with
a setup of 8 RTX3090 GPUs, the training time can be re-
duced to approximately 3 minutes per frame. It should be
noted that once a sequence has been trained and encoded,
users as content consumers can directly use it, and the train-
ing cost is transparent to the users. Therefore, on a practical
application level, our method can provide a smooth experi-
ence on multiple platforms for users. Faster training speed
is indeed important for content creators, and this remains an
area for our future work. Additionally, our method currently
lacks support for temporal interpolation, signifying another
direction for future exploration.
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