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Appendix970

In this Appendix, we provide additional elaboration on as-971

pects omitted in the main paper.972

• Appendix A: Elaborate derivation of back-door and front-973

door adjustments.974

• Appendix B: In-depth comparison of the four VLN975

datasets and corresponding metrics.976

• Appendix C: Additional experimental results and in-977

depth discussions on GOAT.978

• Appendix D: Analysis of failure cases and comprehensive979

discussions of limitations.980

• Appendix E: Additional qualitative panoramic visualiza-981

tions from diverse datasets.982

Code Availability: We assure readers that we will make our983

code and model checkpoints publicly available.984

A. Causal Inference Principles985

A.1. Backdoor Adjustment986

In the realm of causal inference [52], the back-door adjust-987

ment method serves as a cornerstone, enabling researchers988

to estimate causal effects from collected data. It hinges989

on understanding causality, allowing the assessment of the990

impact of an independent variable X on a dependent vari-991

able Y while minimizing the influence of confounders Z. It992

is essential to distinguish between “observation” – passive993

observation of natural relationships (typically formulated as994

P (Y |X) =
∑

z
P (Y |X, z)P (z|X)) – and “intervention”995

– active manipulation of variables to establish causality, de-996

noted as P (Y |do(X)). The do-operator signifies an inter-997

vention where X is forcibly set to a specific value x, thus998

blocking back-door causal paths originating from X .999

To illustrate, consider P (Y |X) and Pm(Y |X) as prob-1000

abilities before and after intervention on the causal graph,1001

respectively, where P (Y |do(X)) = Pm(Y |X). Calculat-1002

ing the causal effect relies on the observation that Pm, the1003

manipulated probability, shares two crucial properties with1004

P . First, the marginal probability P (Z = z) remains un-1005

changed under intervention since the process determining Z1006

is not affected by removing the arrow from Z to X , denoted1007

as Pm(z) = P (z). Second, the conditional probability1008

P (Y = y|X = x, Z = z) is invariant, because the process1009

by which Y responds to X and Z remains consistent, regard-1010

less of whether X changes spontaneously or by deliberate1011

manipulation, i.e., Pm(Y |X, z) = P (Y |X, z). Addition-1012

ally, the independence between Z and X under the interven-1013

tion distribution leads to another rule: Pm(z|X) = Pm(z).1014
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Figure 10. A toy experiment of the differences between the

likelihood before (i.e., P (Y |X)) and after intervention (i.e.,

P (Y |do(X))) in the R2R training dataset. Only several cases are

visualized to avoid clutter.

Considering these equations together, we can derive: 1015

P (Y |do(X)) := Pm(Y |X) (25) 1016

=
∑

z

Pm(Y |X, z)Pm(z|X) (26) 1017

=
∑

z

Pm(Y |X, z)Pm(z) (27) 1018

=
∑

z

P (Y |X, z)P (z). (28) 1019

Eq. (28) is called the back-door adjustment formula. It 1020

computes the association between X and Y for each value 1021

z of Z, then averages over those values. This procedure 1022

is referred to as “adjusting for Z”. This final expression 1023

can be estimated directly since it consists only of condi- 1024

tional probabilities. To better understand the concept of in- 1025

tervention and meanwhile demonstrate its effectiveness, we 1026

conducted a toy experiment based on Eq. (29) and Eq. (30) 1027

using direction-and-landmark keywords extracted from in- 1028

structions in the R2R training dataset: 1029

P (Y |X) =
P (X,Y )

P (X)
(29) 1030

P (Y |do(X)) =
∑

z

P (Y,X, z)P (z)

P (X, z)
(30) 1031

As depicted in Fig. 10, it is evident that P (Y |do(X)) di- 1032

verges from P (Y |X), supporting our hypothesis that key- 1033

words within the instructions function as confounders. To 1034

illustrate, consider Fig. 10(a) where X represents a table. 1035

Previously biased probabilities associated with actions like 1036

past, left, and right become more balanced. In other 1037

words, when the agent encounters a table, its likelihood to 1038

move forward, left, and right becomes evenly distributed, 1039

mitigating the erroneous tendency introduced by dataset bi- 1040

ases. Likewise, in Fig. 10(b), the intricate probabilities sur- 1041

rounding stairs are unraveled, leading to a narrowing 1042

down of up and down probabilities to harmonize with other 1043

feasible actions like stop, left, and right. Therefore, 1044

by introducing the do-operator to realize the active adjust- 1045
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Task Dataset
Train Val Seen Val Unseen Test Unseen Avg.

Edge

Avg.

WordInstr House Instr House Instr House Instr House

Fine-
grained

R2R [4] 14,039 61 1,021 56 2,349 11 4,173 18 5 29
RxR-En [29] 26,464 61 2,939 56 4,551 11 4,085 18 8 78

Goal-
oriented

REVERIE [53] 10,466 60 1,423 46 3,521 10 6,292 16 5 18
SOON [81] 2,779 34 113 2 339 5 615 14 9 39

Table 8. Dataset statistics. This table provides an overview of each split, including the number of instructions and houses, along with the

average edge and average word count for each dataset.

ment P (Y |do(X)) rather than merely passive observation1046

P (Y |X) during data fitting, the spurious correlations and1047

underlying biases are alleviated.1048

A.2. Frontdoor Adjustment1049

While the back-door adjustment formula is effective to con-1050

trol for observable confounders, the front-door adjustment1051

method steps in when the confounders cannot be directly1052

observed. In essence, the front-door adjustment method1053

tackles unobservable confounders by identifying alternative1054

pathways that mediate the relationship between the input1055

and the outcome. This nuanced approach is particularly1056

valuable when dealing with intricate causal structures where1057

certain variables are beyond direct measurement.1058

Concretely, an observable mediator M is inserted be-1059

tween the input X and the output Y , creating a front-door1060

path X → M → Y . First, it’s important to highlight that1061

the influence of X on M can be identified, as there are no1062

back-door paths from X to M . Thus, we can obtain1063

P (M |do(X)) = P (M |X). (31)1064

Furthermore, it’s crucial to recognize that the impact of1065

M on Y is identifiable. This is because the back-door path1066

from M to Y – specifically, M ← X ← Z → Y – can be1067

blocked by conditioning on X:1068

P (Y |do(M)) =
∑

x
′

P (Y |M,x′)P (x′) (32)1069

where x′ denotes the possible value of the whole inputs,1070

rather than the current input X = x. Both Eq. (31)1071

and Eq. (32) are obtained through the adjustment formula.1072

Subsequently, the front-door adjustment formula can be ob-1073

tained by chaining these two partial effects:1074

P (Y |do(X)) =
∑

m

(P (Y |do(M))P (M |do(X))) (33)1075

=
∑

m

∑

x
′

P (Y |m,x′)P (x′)P (m|X). (34)1076

The integration of adjustment formulas, incorporating1077

both the back-door and front-door criteria, encompasses di-1078

verse scenarios. By leveraging graphs and their underly-1079

ing assumptions, we can more effectively discern causal re-1080

lationships and derive causal representations from purely1081

observational data. Motivated by the substantial potential1082

of causal inference, this paper primarily focuses on ap-1083

proximating these adjustments for implementation in deep 1084

learning-based methods for VLN. To the best of our knowl- 1085

edge, this is the first work to explain VLN’s hidden bias 1086

problem from the causal perspective and make an attempt to 1087

remove the effect caused by confounders via intervention. 1088

B. Datasets 1089

B.1. Comparison of Various VLN Datasets 1090

The statistical overview and comparison of the four VLN 1091

datasets are presented in Tab. 8. 1092

1. Fine-Grained VLN Datasets, including R2R [4] and 1093

RxR [29], offer detailed, step-by-step navigational instruc- 1094

tions. Specifically, R2R is proposed to guide agents across 1095

rooms based on language instructions. RxR, an extension 1096

of R2R, augments the complexity with more intricate in- 1097

structions and paths. To align with other VLN datasets, we 1098

focus on RxR’s English subsets (en-IN and en-US). What 1099

sets the VLN challenge apart is the agent’s necessity to fol- 1100

low varied language commands in previously unseen real 1101

environments. This demands a high level of generalization 1102

capability, enabling adaptation to diverse situations. 1103

2. Goal-Oriented VLN Datasets such as REVERIE [53] 1104

and SOON [81] emphasize object localization tasks, where 1105

agents must find specific objects based on remote referring 1106

descriptions. With additional object annotations, these goal- 1107

oriented datasets describe the target object and its location 1108

with concise instructions. The dataset splits of SOON out- 1109

lined in DUET [9] are used for ensuring a unified evaluation 1110

approach. The goal-oriented VLN task enhances the high- 1111

level reasoning abilities of embodied agents, and provides 1112

valuable applications in real-world scenarios. 1113

B.2. Evaluation Metrics 1114

For fine-grained VLN tasks, the agent is expected to fol- 1115

low a specific path to reach the target location. The pri- 1116

mary metric used to evaluate performance is the Success 1117

Rate (SR), indicating how often the agent completes the 1118

task within a certain distance (usually 3m) of the goal. Ad- 1119

ditionally, Navigation Error (NE) measures the aver- 1120

age distance between the predicted and ground-truth loca- 1121

tions. Oracle Success Rate (OSR) assesses whether 1122

any node in the predicted path is within a threshold of 1123
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Id Method SR↑ SPL↑ NE↓ OSR↑

1 Full Model 77.82 68.13 2.40 84.72

2 BACL w/o Text 77.31 66.37 2.51 84.55
3 BACL w/o Vision 75.95 65.31 2.65 83.78

4 FACL w/o Text 77.01 67.32 2.51 84.46
5 FACL w/o Vision 76.97 67.07 2.51 83.23
6 FACL w/o History 77.18 66.01 2.56 84.42

7 Dict. w/o Update 76.46 66.20 2.65 83.78
8 w/o AGF 77.61 67.02 2.48 84.59
9 Inter. Only Final 76.29 66.80 2.58 84.55

Table 9. More ablation studies on the R2R val-unseen split.

the target location. Success weighted by Path1124

Length (SPL) is used to balance both success rate and1125

trajectory length. Since RxR includes paths that approach1126

the goal indirectly, two additional metrics are considered.1127

Normalized Dynamic Time Warping (nDTW) pe-1128

nalizes deviations from the reference path to measure the1129

match between two paths. Success weighted by1130

normalized Dynamic Time Warping (sDTW) re-1131

fines nDTW, focusing solely on successful episodes,1132

thereby capturing both success and fidelity. For goal-1133

oriented tasks, the primary focus is on the agent’s proxim-1134

ity to the goal. In addition to the above metrics, Remote1135

Grounding Success Rate (RGS) is used to assess1136

the accuracy of selecting the object from a set of candidates1137

at the final position. Remote Grounding Success1138

Rate Weighted by Path Length (RGSPL) is in-1139

troduced to account for both success rate and path length.1140

C. Additional Experimental Results1141

C.1. Confounder Factors Variation1142

To explore the contribution of various modalities to causal1143

learning, we further conducted detailed ablation studies on1144

each modality. As demonstrated in #2 – #6 in Tab. 9, differ-1145

ent ablations lead to varying degrees of performance degra-1146

dation, substantiating our hypothesis regarding confounders1147

in VLN systems. Specifically, in BACL, the ablations of1148

textual and visual intervention result in decreses in SR by1149

0.51% and 1.81%, and SPL by 1.76% and 2.82%, respec-1150

tively. This suggests that visual intervention plays a crucial1151

role, which is reasonable given that the primary distinction1152

between seen and unseen environments lies in visual obser-1153

vation. In FACL, the ablations of textual, visual, and histor-1154

ical intervention lead to reductions in SR by 0.81%, 0.85%,1155

and 0.64%, and SPL by 0.81%, 1.06%, and 2.12%, respec-1156

tively. The adjustment to history has relatively more sig-1157

nificant performance gains. Overall, these findings empha-1158

size the importance of comprehensive interventions across1159

cross-modal inputs, yielding more unbiased features and1160

more generalized decision outcomes.1161

Figure 11. Effect of numbers of clusters in FACL.

C.2. Update of Confounder Dictionary 1162

In Tab. 9 #7, we investigate the impact of updating 1163

confounder dictionaries during training. This involves 1164

the textual confounder dictionary in BACL, supported by 1165

RoBERTa’s end-to-end training, and random sampling from 1166

k-means clusters in FACL. The dictionaries are updated ei- 1167

ther when the model achieves a new best performance in 1168

the val-unseen split or every 3,000 iterations. The results 1169

demonstrate that updating the dictionary features aligns the 1170

representations of confounders more effectively with the 1171

evolving model weights and also enhances diversity, lead- 1172

ing to improvements in overall performance (↑ SPL 1.93%). 1173

C.3. Adaptive Gate Fusion 1174

In Tab. 9 #8, we analyze the effects of the AGF module, de- 1175

signed to adaptively fuse causality-enhanced features and 1176

original context features using a gate-like structure. “W/o 1177

AGF” signifies the direct use of causality-enhanced features 1178

without combining them with context features. The results 1179

demonstrate that the adaptive fusion process enables the 1180

model to effectively incorporate both types of features, lead- 1181

ing to comparatively higher performance (↑ SPL 1.11%). 1182

C.4. Intervention Location 1183

In Tab. 9 #9, we validate the effectiveness of extending the 1184

assumption of causal learning to hidden features, rather than 1185

focusing solely on outputs. The results indicate that incor- 1186

porating intervention modules only before the final Softmax 1187

layer enhances generalization capabilities to some extent. 1188

However, applying these interventions in shallower layers 1189

yields superior performance (SPL 68.13 vs. 66.80). This ex- 1190

tended assumption renders the application of causal learn- 1191

ing in deep learning methods more flexible and practical. 1192

C.5. Number of KMeans Clusters in FACL 1193

Given that the confounder addressed by FACL is unob- 1194

servable, we employ the K-Means algorithm to cluster the 1195

global features extracted by the trained CFP module from 1196

the entire training dataset. During the fine-tuning phase, we 1197

periodically sample features from these clusters to integrate 1198
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Figure 12. Comparison of GFLOPs and Accuracy.

into training. The experimental results of determining the1199

number of categories for clusters are shown in Fig. 11. It1200

presents that the choice of 24 clusters in FACL yields opti-1201

mal performance in both SR and SPL. This strategic clus-1202

tering approach ensures a comprehensive coverage of po-1203

tential categories, enhancing the model’s ability to discern1204

confounders. Notably, too few clustering categories may1205

overlook crucial distinctions, whereas an excessive number1206

introduces redundant computational overhead and irrelevant1207

noise, ultimately hampering training performance.1208

C.6. Efficiency and Effectiveness Comparison1209

It is necessary to consider both efficiency and effectiveness1210

since VLN is prompted to be applicable in real-world robots1211

in the future. To assess computational complexity, we em-1212

ployed the Python toolkit thop, comparing GFLOPs with1213

other transformer-based methods. For fair comparison, we1214

conducted single-step forward inference with a batch size of1215

8, instruction length of 44, and historical global graph node1216

of 6 across all methods. As shown in Fig. 12, GOAT strik-1217

ingly balances efficiency and effectiveness, outperforming1218

previous approaches in both SR and SPL while maintaining1219

lower GFLOPs. This reduction in computational cost is at-1220

tributed to the adoption of a lighter framework with fewer1221

transformer layers. This discovery illustrates that in scenar-1222

ios with restricted task-specific datasets, adopting a lighter1223

framework can enhance generalization while significantly1224

reducing computational costs.1225

D. Analysis of Failure Cases and Limitations1226

Despite GOAT’s remarkable performance, we also exam-1227

ined specific failure cases to shed light on its limitations.1228

For instance, as depicted in Fig. 13, GOAT struggles with1229

instructions involving numerical references. In the first1230

case, it misidentified the 5th chair but arrived at the 8th1231

chair instead. This phenomenon is aligned with the problem1232

DestinationStarting point

Ground-truth GOAT (Ours)

Unvisited pointVisited point

• Instruction:

Turn right to face an old pew 

and chairs. Walk up to the 

old chairs and turn right. 

Walk down the row until you 

reach the 5th chair.

• Instruction:

Walk from bathroom into 

bedroom. Walk out of 

bedroom into hallway. Walk 

into bedroom. Wait next to 

open bedroom door.

bedroom

bedroom

bedroom

chair

Figure 13. Illustration of Failure Cases.

of current large models that are not sensitive to numbers and 1233

arithmetic tasks. Addressing this issue could benefit from 1234

approaches like the chain-of-thought method [72], which 1235

has shown promise in handling numerical tasks. Moreover, 1236

when instructions are initially ambiguous (e.g., in the sec- 1237

ond case, there are actually two bedrooms that fit the 1238

description), GOAT might select the wrong option. Uti- 1239

lizing datasets like [47, 59], which focus on human-agent 1240

interaction, could improve the agent’s decision-making in 1241

response to ambiguous instructions. Incorporating such 1242

datasets could empower the agent with a more robust and 1243

practical interactive capacity, reducing the likelihood of er- 1244

roneous predictions. Finally, the limitation to the integra- 1245

tion of causal learning with deep-learning methods, includ- 1246

ing the approximation process inherent in calculating ex- 1247

pectations, and distinct modalities exhibiting varying pref- 1248

erences for specific probability estimations, requires ongo- 1249

ing efforts in future research to enhance the interpretability 1250

of these discrepancies. 1251

E. Additional Qualitative Examples 1252

Due to space limitations in the text, we present only the 1253

top view to depict the navigation scenarios. In this sec- 1254

tion, we provide predicted panoramic paths on four datasets 1255

in Fig. 14, 15, 16, 17, respectively, to enhance readers’ com- 1256

prehension of the tasks’ objectives and the effectiveness of 1257

our approach. Specifically, the red arrows indicate the for- 1258

ward directions, and the corresponding instructions are pro- 1259

vided below the visualized trajectories. 1260
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Turn around and exit the bathroom. Once out turn left and head towards the sitting area. Once you reach that 
area turn left and enter the door to your right, beside the desk. Stop once you are in the doorway of the room.

Walk out of the washroom past the double closet doors and walk into the next room. Walk into the kitchen 
area and continue along the counter tops past the sink. Continue through the open door at the end of the 
counter tops.

Figure 14. Visual examples in the R2R validation-unseen split with navigation instructions presented at the bottom.

17



CVPR

#1647

CVPR

#1647

CVPR 2024 Submission #1647. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Advance to the lounge and open the cabinet doors across from the water.

Figure 15. Visual examples in the REVERIE validation-unseen split with navigation instructions presented at the bottom.
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Figure 16. Visual examples in the RxR validation-unseen split with navigation instructions presented at the bottom.
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I'd like to find a picture on the wall, opposite to the door of the toilet in the corridor of the bedroom, which is connected with a bedroom, a toilet 
and a small living room.The picture is rectangular, black and white.

Find a tall, woody, gray cabinet which is next to a big window, between a chair. The bookshelf is settled in a spacious and bright living room 
in front of a dining room and a kitchen. It is located in the first floor.

Figure 17. Visual examples in the SOON validation-unseen split with navigation instructions presented at the bottom.
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