
XScale-NVS: Cross-Scale Novel View Synthesis
with Hash Featurized Manifold

Supplementary Material

1. Additional Dataset Details

Scene Area (m2) #Images Resolution
TW-Pavilion (Day) 1.3⇥ 104 10,999 5K/8K

TW-Pavilion (Night) 1.3⇥ 104 1,687 5K/8K
Lanes & Alleys 4.5⇥ 105 18,206 5K/8K

The Great Wall (T3) 3⇥ 106 7,441 5K/8K
The Great Wall (T2) 2⇥ 106 6,372 5K/8K
The Five Old Peaks 1.5⇥ 106 3,960 5K/8K

Sandie Spring 3⇥ 106 5,474 5K/8K

Table 1. Statistics of the GigaNVS dataset.

Our dataset is captured using two drones and a hand-
held DSLR. The drones we use include a DJI Matrice 300
RTK equipped with a fixed 35mm camera, whose FOV is
63.5� and the image resolution is 5460⇥8192. The other
drone is a DJI Mavic 3 mounted with a fixed 24mm camera,
whose FOV is 84� and the image resolution is 3956⇥5280.
The ground photography is captured by a Canon EOS R5
DSLR camera with a 15-30mm lens, and the image resolu-
tion is 5464⇥8192. Since we focus on in-the-wild ultra-
large-scale scenes and aim to collect high-quality multi-
view imagery of varying scales, it is difficult to finish cap-
turing within a short period to maintain a constant illumi-
nation condition. We therefore manually adjust the ISO,
white balance, shutter speed, and aperture size of the cam-
eras according to the illumination condition to prioritize the
imaging quality.

A detailed statistics of our dataset is listed in Table 1.
The scenes we capture typically span areas of several square
kilometers. For each scene, we capture between 1,687 and
18,206 images taking several days. We use shared intrinsic
parameters for images captured from the same camera, and
we use Agisoft Metashape [1] to compute the camera poses,
undistort the images, and reconstruct the mesh. We take ev-
ery 7th photo as our test set for each scene, which approxi-
mates a uniform coverage of all view points and scales.

2. Additional Implementation Details
In this section, we further detail the implementations of our
model and the training strategies we use, and then present
details regarding the comparative evaluations.
Additional Model Details. We use L = 16 levels of multi-
resolution hash encoding with a coarsest resolution of 16
and a finest resolution of 213 ⇠ 219 depending on the scene
scale and the image resolution. We use a maximum num-
ber of Nh = 222 hash entries with Z = 8 feature channels,
following [11]. The mesh is reconstructed using Agisoft

Metashape [1] and we set the multisampling rate � as 2 dur-
ing rasterization. The only loss function we use is the L1
photometric error. The decoder MLP M and the manifold
deformation MLP ⇠ consist of 4 and 2 layers respectively,
where each layer contains 64 hidden units. The concate-
nated multi-resolution hash features are consumed through
FiLM-conditioning [5, 14]. To compensate for the cam-
era response variations of the real-world captures, we fol-
low [4, 11] to use appearance embedding to modulate the
intermediate features of the decoder M.
Additional Training Details. To enable a large batch size
of camera views during training, we pre-cache the rasterized
z-buffer of the reconstructed mesh for each training view.
At each training iteration, we sample a random set of cam-
era views and then a random batch of pixel rays from the
caches for each sampled view. We use a batch size of 16 for
the random views and a batch size of 16384 for the random
rays. We train our model using the Adam optimizer [9] with
a learning rate of 10�4 for 1000 epochs, randomly iterating
through all training views to complete a single epoch. The
training can be done with a single NVIDIA RTX3090 GPU.
Additional Evaluation Details. Similar to [18], we only
focus on the reconstruction of foreground regions. For a
fair comparison to other baselines [8, 11, 13], we leverage
the mesh to explicitly benefit their performance by provid-
ing not only the geometric guidance but also foreground
mask priors. Specifically, we project the mesh to fill the
background regions of all input images as pure white, i.e.,
[255, 255, 255], and set the background colour in [8, 11, 13]
explicitly as the same white colour during training. We
find this simple modification effectively bypasses the dif-
ficult background modelling task and significantly boosts
the foreground rendering quality of these methods. We also
use the rasterized foreground mask to calculate an addi-
tional BCE loss as done in [19] to further regularize the
foreground geometry of [8, 11, 13]. Before computing the
evaluation metrics, we apply the same rasterized mask to the
renderings of all competing methods and the corresponding
ground truth image. We fairly evaluate our method and all
other baselines using the same NVIDIA RTX3090 GPU.

3. Additional Results on GigaNVS
In this section, we present additional qualitative results on
the challenging GigaNVS dataset.
1K-resolution Novel View Synthesis. We first compare
against prior state-of-the-art approaches [8, 11, 13] on novel
view synthesis with 1K resolution images as inputs and



(a) 3D Gaussian Splatting [8] (b) Neuralangelo [11] (c) iNGP [13] (d) Ours (e) Ground Truth Image

Figure 2. Qualitative comparisons of 1K-resolution novel view synthesis on the GigaNVS dataset. Compared to [8, 11, 13], our hash
featurized manifold represents cross-scale contents with superior fidelity and effectively preserves the rich details of the original imagery.



Figure 3. Qualitative results of 5K-resolution novel view synthesis on the GigaNVS dataset. Our method fully exploits the input resolution
and demonstrates strong scalability towards high-resolution neural rendering. Please zoom-in to see the high-resolution details.

(a) 3D Gaussian Splatting [8] (b) Neuralangelo [11] (c) iNGP [13] (d) Ours (e) Ground Truth Image

Figure 4. Visual comparisons on the Tanks&Temples dataset [10]. Our method excels at recovering local intricate details yet generally
performs on par with state-of-the-art neural rendering methods [8, 11, 13] on small-scale scenes.

outputs. The corresponding qualitative results are shown
in Fig. 2. Our hash featurized manifold synthesizes novel
views with significantly superior fidelity compared to other
baselines, effectively recovering realistic cross-scale details
of the relievos, plants, tiles, and stones, reflecting unprece-
dentedly rich contents in real-world large-scale scenes.

5K-resolution Novel View Synthesis. To take a step fur-
ther, our method can operate effectively on high-resolution
inputs of 5K or 8K due to the expressivity and efficiency,

whereas existing baselines are not scalable towards this
high-resolution setup, since they still struggle to render the
details at 1K resolution (see Fig. 2 (a), (b), (c)) and suf-
fer from memory issues. In Fig. 3, we provide our 5K
novel view synthesis results where our model is trained us-
ing the original 5K resolution imagery. The results sug-
gest that our method can successfully exploit the rich infor-
mation brought by the high-resolution imagery and repre-
sent scenes using approximately the input-level resolution.



Scene Meta representation[18] 3D Gaussian Splatting[8] Neuralangelo[11] iNGP[13] Ours
PSNR " SSIM " LPIPS# PSNR " SSIM " LPIPS# PSNR " SSIM " LPIPS# PSNR " SSIM " LPIPS# PSNR " SSIM " LPIPS#

Family 27.92 0.913 0.035 28.54 0.920 0.035 28.02 0.922 0.033 28.49 0.919 0.036 28.15 0.915 0.032
Francis 33.11 0.958 0.048 35.77 0.969 0.050 30.54 0.951 0.056 31.85 0.950 0.067 35.32 0.973 0.024
Horse 35.22 0.979 0.027 34.88 0.986 0.017 34.62 0.984 0.016 35.16 0.984 0.018 36.07 0.984 0.017
M60 27.36 0.891 0.153 29.41 0.918 0.133 27.03 0.886 0.154 28.82 0.907 0.132 28.07 0.899 0.115

Lighthouse 23.92 0.811 0.201 22.49 0.825 0.207 23.96 0.836 0.191 24.47 0.842 0.187 26.47 0.866 0.127
Panther 28.57 0.889 0.162 26.83 0.869 0.210 27.87 0.901 0.155 29.70 0.908 0.146 29.05 0.903 0.112
Train 22.12 0.803 0.207 22.44 0.834 0.206 19.85 0.806 0.195 22.21 0.826 0.184 24.50 0.863 0.124
Mean 28.32 0.892 0.119 28.62 0.903 0.123 27.41 0.898 0.114 28.67 0.905 0.110 29.66 0.914 0.079

Table 2. Quantitative comparisons on seven scenes from the Tanks&Temples dataset.

Figure 5. Qualitative results with different mesh resolutions on the Sandie Spring scene of GigaNVS dataset, where our novel view RGB
renderings and the corresponding mesh normals are visualized. The first two rows are macro-scale renderings from a distance and the
last two rows are micro-scale renderings at the close-up. Our method robustly recovers scene contents at drastically different scales when
down-sampling the mesh to lower resolutions.

As observed, our 5K rendering delivers significantly richer
details compared to the ground truth image of 1K resolu-
tion, indicating a continuously better perceptual quality pro-
portional to the input resolution, which hash rarely been
verified in existing in-the-wild neural rendering methods.
Therefore, the proposed hash featurized manifold represen-
tation shows great potential to bridge the resolution gap be-
tween sensation and reconstruction.

4. Additional Results on Tanks&Temples
We now present more detailed results on the public
Tanks&Temples dataset [10]. Following [18], we select
seven real-world outdoor scenes from this dataset to bench-
mark our performance on small-scale scenarios. In Fig. 4,
we show visual comparisons of the competing methods on
four representative scenes. In general, our method performs

on par with state-of-the-art baselines [8, 11, 13] while only
showing slight improvements at fine-grained details, with
the micro-scale intricate textures on the sculpture and tanks
better recovered. The quantitative evaluations are reported
in Table 2. Our method yields a ⇠1dB improvement in
PSNR and a 28% lower LPIPS relative to the second best
method iNGP [13]. Therefore, hash featurized manifold can
serve as a general purpose neural scene representation offer-
ing superior expressivity and efficiency.

5. Additional Ablations
In this section, we provide additional ablations to conduct a
more comprehensive demonstration of our design.
Featurization Enhancements. The surface multisampling
and manifold deformation serve as optional enhancements
upon the hash featurized manifold representation, which



Figure 6. Qualitative results with different mesh resolutions on the TW-Pavilion (Day) scene of GigaNVS dataset. First row: our novel
view RGB renderings; Second row: the corresponding rendered normals of the input mesh.

can help to better describe the cross-scale scene details.
As shown in Fig. 7, our method can subsequently render
sharper details after introducing these designs.

Figure 7. Qualitative comparisons of novel view synthesis with
different levels of featurization enhancements. Sharp details can
be effectively recovered with surface multisampling (M) and man-
ifold deformation (D).

Method #Primitives PSNR" SSIM" LPIPS#
Ours 16M 17.61 0.724 0.206
Ours 8M 17.58 0.722 0.210
Ours 4M 17.52 0.714 0.218
Ours 2M 17.47 0.704 0.226
Ours 1.6M 17.44 0.696 0.233
Ours 1M 17.35 0.680 0.242
Ours 0.5M 17.14 0.645 0.264

3D Gaussian Splatting [8] 3M 17.25 0.670 0.380

Table 3. Mesh resolution ablation on the Sandie Spring scene.

Method #Primitives PSNR" SSIM" LPIPS#
Ours 10M 23.02 0.786 0.113
Ours 5M 22.94 0.785 0.112
Ours 2M 22.87 0.783 0.112
Ours 1M 22.84 0.782 0.114
Ours 0.5M 22.44 0.767 0.125
Ours 0.2M 22.07 0.749 0.140

3D Gaussian Splatting [8] 3M 21.52 0.752 0.225

Table 4. Mesh resolution ablation on the TW-Pavilion (Day) scene.

Mesh Resolution. We now present further demonstrations
regarding the robustness of our representation w.r.t. the in-
put mesh resolution. The ablations are performed on two

challenging scenes (Sandie Spring and TW-Pavilion (Day))
from the GigaNVS dataset. The quantitative evaluations
on the two scenes are reported in Table 3 and Table 4 re-
spectively, where #Primitives denote the amount of triangle
facets of our input mesh or the amount of gaussians used
in [8], and ‘M’ denotes a million. Remarkably, our repre-
sentation shows strong robustness w.r.t. the mesh resolution
and outperforms 3DGS [8] with much lower discretization
resolution. Unlike [8], our hash featurized manifold is es-
sentially a neural-based representation which does not ex-
plicitly store per-primitive feature descriptors (and also the
gradients during optimization), potentially being expressive
enough independent of the discretization resolution. On the
other hand, our method can leverage a higher resolution
mesh in a memory efficient way, where the mesh resolu-
tion only affects the memory for rasterization. For exam-
ple, when rendering a 1K image, 3DGS [8] consumes 18G
memory with 3 million gaussians, whereas our method only
takes up 15G memory using a mesh with 10 million facets.

6. Necessity for Improving Feature Resolution

Figure 8. Illustration of the featuremetric resolution issue.

In contrast to early neural representations [12, 19] that
use a large global MLP to encode the entire scene, recent
works [6, 11, 13, 16] tend to use a hybrid representation,
i.e., a combination of the explicit volumetric featurization
with a light-weight MLP decoder. In this way, the repre-



Figure 9. Qualitative relighting results on the TW-Pavilion (Day) scene when varying the lighting embedding.

Figure 10. Quantitative and qualitative evaluations with different
featuremetric resolutions (210 ⇠ 213).

sentational power can be effectively shifted from the MLP
to local spatial features, which enables superior reconstruc-
tion quality and efficiency.

In light of this, we hold that the spatial resolution of the
underlying local features is strongly correlated to the ex-
pressivity of the representation, and it is essential to allocate
local features with a sufficient resolution according to the
scene complexity, scale variation, and the image resolution.
We now give an intuitive illustration of this observation in
Fig. 8. Assuming we have a coarse mesh with per-vertex
learnable features, and we first consider small-scale sim-
ple scenes which are often captured at a medium distance
with relatively low-resolution. As shown in Fig. 8 (a), a
single surface primitive, i.e., a triangle facet in this case,
only contains the information of very few pixels on the cap-
tured image. In this case, it is easy to accurately express the
information of the pixels using the three feature descriptors
at the vertices. However, for large-scale complex scenes
with high-resolution or close-up captures, as illustrated in
Fig. 8 (b), the pixel information covered by the same sur-
face primitive is significantly enriched, making it difficult to
fully describe the high-frequency pixel contents only by the
vertex-defined features. In this case, the representation will
produce blurry renderings. Note that representations based

on other types of surface primitives like UV texels [17, 18],
points [2, 15], or Gaussians [8] also share the same intu-
ition. Therefore, to tackle this issue, we should increase
the featuremetric resolution to match the richness of pix-
els, which may significantly exceed the resolution of sur-
face primitives, as shown in Fig. 8 (c).

To verify the above intuition, we conduct ablations by
varying the conceptually expressed finest resolution of hash
encoding while keeping the hash table size fixed. The ex-
periments are performed on the TW-Pavilion (Day) scene
with 1K resolution. As shown in Fig. 10, increasing the
finest resolution from 210 to 213 improves the quantitative
metrics and enables more detailed view synthesis.

7. In-the-wild Relighting on GigaNVS
Our method models the view-dependent colour c 2 R3 with
an MLP-based implicit function M : RLZ ⇥ R3 7! R3,
which takes as inputs the queried hash feature FH

s (xs) 2
RLZ and the view direction vector d 2 R3, i.e.,

c = M(FH

s (xs),d). (1)

We can easily extend this formulation to implicitly ac-
count for the global illumination by introducing an addi-
tional lighting embedding e(k)l 2 RE :

c = M(FH

s (xs),d, e
(k)
l ). (2)

Specifically, we leverage the timestamps from the meta-
data to partition the collected imagery into K subsets,
where each subset has a very different illumination, and
images within a subset share nearly the same illumination
condition. We then assign a learnable lighting embedding
e(·)l for each subset, and so we have K lighting embeddings
{e(k)l }Kk=1 in total, representing K different scene illumina-
tions. Given a specific training view from the k-th subset,
we only back-propagate the gradients to the related lighting
embedding e(k)l during training. In this way, we can relight
the rendering by varying the lighting embedding passed to
the implicit function M, and unseen illuminations can be
synthesized by interpolating between an arbitrary pair of the



latent embeddings:

e(i,j,⌧)l = ⌧e(i)l + (1� ⌧)e(j)l , (3)

where ⌧ 2 [0, 1) is a scalar value denoting the interpolation
weight.

In Fig. 9, we show our relighting results at a novel view
point, where we empirically set the dimensionality of the
lighting embeddings as E = 8. The proposed lighting em-
bedding effectively reasons about the global illumination
effects and further improves the rendering fidelity of real-
world large-scale scenes. Please refer to the supplementary
video to see the smoothly interpolated illuminations.

8. Visualizations of Surface Ambiguity

Figure 11. Visualization of the volume rendering weight distri-
butions of Neuralangelo [11]. The middle image is the final RGB
rendering. In each surrounding sub-figure, we plot the weight w(t)
for each individual sample at certain normalized distance t traced
from one of the labeled pixels. The red vertical lines denote the
surface locations calculated by mesh rasterization. For brevity, we
only show important samples near the surface.

In Fig. 11, we take Neuralangelo [11] as an example
and visualize the weight distributions (the blue dot curves
in the surrounding sub-figures) along the labeled pixel rays
from the middle rendered image. Note that we use the mesh
surface (the red vertical lines) reconstructed from MVS to
densely supervise the SDF field in 3D [7] throughout the ex-
periments. However, the resulting weight distributions still
scatter across a thick region, where most samples are in lack
of multi-view consistency yet assigned with high volume
rendering weight. As a result, these non-surface samples
induce colour ambiguity and propagate inconsistent colour
gradients to the surface sample, thus leading to excessive
blurries that can be found in the rendering.

9. Limitations and Future Work
Given that our representation is essentially a surface-based
featurization, the incompleteness of the mesh reconstruc-
tion (e.g., far-away background regions or the holes caused
by erroneous correspondence) is inevitably reflected in the
rendering. However, since our primary focus is real-world

large-scale scene reconstruction, where highly-specular sur-
faces or large textureless regions are not commonly wit-
nessed, the mesh reconstructed by existing MVS methods is
generally reliable enough. Regarding the background issue,
we can easily address it by incorporating another volumetric
neural field, similar to [3, 4, 11]. Except for the incomplete-
ness, remarkably, our method is robust to other topological
or geometric degradations without the need to explicitly fix
the mesh � see the ‘1M’ results in Fig. 5 and 6, where
our method effectively represents the missing details of the
suboptimal geometry.

Our future work is to explore scalable differentiable
rendering pipelines for more flexible optimization of
the topology, and to investigate physically-based inverse
rendering techniques for the explicit acquisition of the
underlying intrinsic properties, which is indispensable for
downstream industrial applications.
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