
Zero-TPrune: Zero-Shot Token Pruning through Leveraging of the Attention
Graph in Pre-Trained Transformers

Supplementary Material

A. The I-S Pattern and the I′-S-I Pattern

In this section, we first demonstrate the overwhelming of
the major group issue caused by the I-S pattern and then
compare it with the I′-S-I pattern visually.

A.1. Overwhelming of the Major Group with the
I-S Pattern

Sometimes, unimportant parts of an image may be iden-
tified as important and important parts as unimportant by
our graph-based WPR algorithm. In the I-stage, each to-
ken votes for ”more important tokens” and the weight of
their votes is determined by their importance in the last
round of voting. Besides the semantically significant to-
kens, tokens also intend to vote for tokens that are similar to
them. When semantically significant tokens (e.g., main ob-
ject tokens) are only a small part of an image and unimpor-
tant background tokens dominate, sometimes background
tokens vote for each other and gradually obtain high impor-
tance scores after multiple rounds of voting. An example is
shown in Fig. 1. It shows that the background of the image
is considered important in the Transformer heads. The fish
itself, surprisingly, is considered unimportant.

Figure 1. An example illustrating that a large unimportant group
may overwhelm a small important group: (a) input image and (b)
three examples showing that unimportant background tokens over-
whelm the important fish tokens.

In this image, the background and fish tokens form two
sets: A and B. In the beginning, because tokens in set B are
more semantically significant than those in set A, they have
relatively high importance scores. However, both tokens in
set A and set B mainly intend to vote for tokens in their own
set. Thus, it is easier for set A to form tokens with high im-
portance scores because set A includes more tokens. These
“highly important” tokens have larger voting weights in the
next iteration. This makes it even easier for other tokens in
set A to get “high importance.” This is a positive feedback
loop, with the result that the most “important” tokens end
up in set A.

A.2. Comparison

As shown in Fig. 2, by pruning similar background tokens
in advance, the overwhelming of the major group problem
is alleviated significantly.

B. Attention Probability Matrix

ViT [5] and its variants contain multiple Transformer en-
coder layers that are stacked up together. The basic
Transformer encoder layer includes a multi-head atten-
tion (MHA) block followed by a feed-forward network
(FFN) block, with residual connections and layer normal-
ization around each. We make the assumption that an
MHA block consists of H independently parameterized
heads. An attention head h in layer l can be parame-
terized by the Key, Query, and Value weight matrices:
W

(h,l)
k ,W

(h,l)
q ,W

(h,l)
v ∈ Rdh×d, and the output weight

matrix W
(h,l)
o ∈ Rd×dh , where dh is typically set to

d/H and d is the embedded feature dimension. Suppose
x ∈ Rd×n is the input sequence and n is the input sequence
length. For each head, the attention probability between to-
ken xi and xj is given as an element of matrix A(h,l):

A(h,l) (xi, xj) = softmax

(
xTWT

q Wkx√
d

)
(i,j)

∈ R (1)

This matrix measures how much token xj attends to to-
ken xi. The output of an MHA block can be formulated as
follows:

xMHA = LN

(
Wo

n∑
i=1

WvxiA
(h,l) (xi, xj) + x

)
(2)

The output of a Transformer encoder layer can be formu-
lated as follows:

xout = LN(σ (W2 (W1xMHA + b1)) + b2 + xMHA)
(3)

where W1,W2, b1, and b2 are FFN parameters, and σ and
LN denote the activation function and layer normalization,
respectively. We can see that the computation overhead of a
Transformer encoder layer undergoes a quadratic reduction
when tokens are pruned.

1



Figure 2. Visual comparison between the I-S pattern and the I0-S-I pattern.

C. Optional Training Paradigm after Pruning
Zero-TPrune can eliminate the fine-tuning process after
pruning with a very small accuracy reduction. However, in
some scenarios, we may have adequate samples and compu-
tational resources. In such cases, the performance of Zero-
TPrune can be improved further by training (fine-tuning)
after pruning. In this section, we introduce techniques used
to accomplish this.

Given that it is very expensive to make importance-based
ranking differentiable [4], we eliminate the S-stage and re-
tain only the I-stage when we aim to further train (fine-tune)
the pruned model. Besides this, to make Zero-TPrune dif-
ferentiable, it is necessary to replace normal token pruning
with “soft token pruning.” Instead of completely discard-
ing pruned tokens, soft token pruning assigns them small
weights to reduce their effect on later computation and pre-
serves compatibility with back-propagation during training.
In this way, the non-differentiable token mask M is re-
placed with a differentiable soft mask M̃ using the sigmoid
operation:

M̃ (l) (xi) = σ

(
s(l) (xi)− θ(l)

T

)
(4)

where s(l) (xi) is the importance score of token xi and θ(l)

is the importance threshold for the l-th layer. θ(l) is de-
termined based on the chosen pruning rate and GFLOPS
budget. Details of soft token pruning can be found in [9].

For simplicity, we use a similar loss function to Dynam-
icViT [16], which includes three terms:

L = Lcls + λdistill Ldistill + λKLLKL (5)

The first term is the standard classification cross-entropy
loss:

Lcls = CrossEntropy (y,y) (6)

During fine-tuning, we use the original backbone network
as the teacher model and push the behavior of the Zero-
TPrune model to be as close to the teacher model as pos-
sible. First, we push the finally retained tokens of Zero-
TPrune close to the ones of the teacher model. This con-
tributes to the second distillation term above. We also mini-
mize the difference in predictions between Zero-TPrune and
its teacher via Kullback-Liebler (KL) divergence. This con-
tributes to the third term. Details of the loss function can be
found in [16].

D. Visualization
In this section, we use some visualization examples to pro-
vide high-level insights.

D.1. An Input Image Example

Fig. 3 shows a simple test sample of a fish from the Ima-
geNet dataset and the corresponding importance score dis-
tributions in different layers and heads. We can see that
most heads can successfully capture the important part of
this image with the help of the graph-based WPR algorithm.

D.2. Averaged Importance Distribution over Thou-
sands of Images

Another interesting visualization example is related to the
general functionality of different layers in the Transformers.

2


	. The I-S Pattern and the I-S-I Pattern
	. Overwhelming of the Major Group with the I-S Pattern
	. Comparison

	. Attention Probability Matrix
	. Optional Training Paradigm after Pruning
	. Visualization
	. An Input Image Example
	. Averaged Importance Distribution over Thousands of Images

	. Combining Results of Different Heads
	. Emphasizing Informative Region
	. Variance-based Head Filter

	. Downstream Tasks
	. Ablation Experiments
	. Convergence Speed of the WPR Algorithm
	. Variance Thresholds for VHF
	. Optimal Design Choices in the S-stage
	. Performance of Zero-TPrune-uni
	. Hyperparameter Search

	. Comparison with State-of-the-Art Methods
	. Depth-Adaptive Methods
	. Attention-based Token Ranking Methods
	. Fine-Tuning-Free Token Pruning Methods

	. Comparison between Scaling and Pruning

