
Zero-TPrune: Zero-Shot Token Pruning through Leveraging of the Attention
Graph in Pre-Trained Transformers

Supplementary Material

A. The I-S Pattern and the I′-S-I Pattern

In this section, we first demonstrate the overwhelming of
the major group issue caused by the I-S pattern and then
compare it with the I′-S-I pattern visually.

A.1. Overwhelming of the Major Group with the
I-S Pattern

Sometimes, unimportant parts of an image may be iden-
tified as important and important parts as unimportant by
our graph-based WPR algorithm. In the I-stage, each to-
ken votes for ”more important tokens” and the weight of
their votes is determined by their importance in the last
round of voting. Besides the semantically significant to-
kens, tokens also intend to vote for tokens that are similar to
them. When semantically significant tokens (e.g., main ob-
ject tokens) are only a small part of an image and unimpor-
tant background tokens dominate, sometimes background
tokens vote for each other and gradually obtain high impor-
tance scores after multiple rounds of voting. An example is
shown in Fig. 1. It shows that the background of the image
is considered important in the Transformer heads. The fish
itself, surprisingly, is considered unimportant.

Figure 1. An example illustrating that a large unimportant group
may overwhelm a small important group: (a) input image and (b)
three examples showing that unimportant background tokens over-
whelm the important fish tokens.

In this image, the background and fish tokens form two
sets: A and B. In the beginning, because tokens in set B are
more semantically significant than those in set A, they have
relatively high importance scores. However, both tokens in
set A and set B mainly intend to vote for tokens in their own
set. Thus, it is easier for set A to form tokens with high im-
portance scores because set A includes more tokens. These
“highly important” tokens have larger voting weights in the
next iteration. This makes it even easier for other tokens in
set A to get “high importance.” This is a positive feedback
loop, with the result that the most “important” tokens end
up in set A.

A.2. Comparison

As shown in Fig. 2, by pruning similar background tokens
in advance, the overwhelming of the major group problem
is alleviated significantly.

B. Attention Probability Matrix

ViT [5] and its variants contain multiple Transformer en-
coder layers that are stacked up together. The basic
Transformer encoder layer includes a multi-head atten-
tion (MHA) block followed by a feed-forward network
(FFN) block, with residual connections and layer normal-
ization around each. We make the assumption that an
MHA block consists of H independently parameterized
heads. An attention head h in layer l can be parame-
terized by the Key, Query, and Value weight matrices:
W

(h,l)
k ,W

(h,l)
q ,W

(h,l)
v ∈ Rdh×d, and the output weight

matrix W
(h,l)
o ∈ Rd×dh , where dh is typically set to

d/H and d is the embedded feature dimension. Suppose
x ∈ Rd×n is the input sequence and n is the input sequence
length. For each head, the attention probability between to-
ken xi and xj is given as an element of matrix A(h,l):

A(h,l) (xi, xj) = softmax

(
xTWT

q Wkx√
d

)
(i,j)

∈ R (1)

This matrix measures how much token xj attends to to-
ken xi. The output of an MHA block can be formulated as
follows:

xMHA = LN

(
Wo

n∑
i=1

WvxiA
(h,l) (xi, xj) + x

)
(2)

The output of a Transformer encoder layer can be formu-
lated as follows:

xout = LN(σ (W2 (W1xMHA + b1)) + b2 + xMHA)
(3)

where W1,W2, b1, and b2 are FFN parameters, and σ and
LN denote the activation function and layer normalization,
respectively. We can see that the computation overhead of a
Transformer encoder layer undergoes a quadratic reduction
when tokens are pruned.

1

Figure 2. Visual comparison between the I-S pattern and the I′-S-I pattern.

C. Optional Training Paradigm after Pruning
Zero-TPrune can eliminate the fine-tuning process after
pruning with a very small accuracy reduction. However, in
some scenarios, we may have adequate samples and compu-
tational resources. In such cases, the performance of Zero-
TPrune can be improved further by training (fine-tuning)
after pruning. In this section, we introduce techniques used
to accomplish this.

Given that it is very expensive to make importance-based
ranking differentiable [4], we eliminate the S-stage and re-
tain only the I-stage when we aim to further train (fine-tune)
the pruned model. Besides this, to make Zero-TPrune dif-
ferentiable, it is necessary to replace normal token pruning
with “soft token pruning.” Instead of completely discard-
ing pruned tokens, soft token pruning assigns them small
weights to reduce their effect on later computation and pre-
serves compatibility with back-propagation during training.
In this way, the non-differentiable token mask M is re-
placed with a differentiable soft mask M̃ using the sigmoid
operation:

M̃ (l) (xi) = σ

(
s(l) (xi)− θ(l)

T

)
(4)

where s(l) (xi) is the importance score of token xi and θ(l)

is the importance threshold for the l-th layer. θ(l) is de-
termined based on the chosen pruning rate and GFLOPS
budget. Details of soft token pruning can be found in [9].

For simplicity, we use a similar loss function to Dynam-
icViT [16], which includes three terms:

L = Lcls + λdistill Ldistill + λKLLKL (5)

The first term is the standard classification cross-entropy
loss:

Lcls = CrossEntropy (y,y) (6)

During fine-tuning, we use the original backbone network
as the teacher model and push the behavior of the Zero-
TPrune model to be as close to the teacher model as pos-
sible. First, we push the finally retained tokens of Zero-
TPrune close to the ones of the teacher model. This con-
tributes to the second distillation term above. We also mini-
mize the difference in predictions between Zero-TPrune and
its teacher via Kullback-Liebler (KL) divergence. This con-
tributes to the third term. Details of the loss function can be
found in [16].

D. Visualization
In this section, we use some visualization examples to pro-
vide high-level insights.

D.1. An Input Image Example

Fig. 3 shows a simple test sample of a fish from the Ima-
geNet dataset and the corresponding importance score dis-
tributions in different layers and heads. We can see that
most heads can successfully capture the important part of
this image with the help of the graph-based WPR algorithm.

D.2. Averaged Importance Distribution over Thou-
sands of Images

Another interesting visualization example is related to the
general functionality of different layers in the Transformers.

2

Figure 3. The important part of input images can be successfully captured by the graph-based WPR algorithm: (a) a test sample of fish in
the ImageNet dataset and (b) the corresponding importance score distributions given by the WPR algorithm in different layers. The used
backbone is DeiT-S.

Fig. 4 shows the importance score distributions averaged
over thousands of images. It indicates that different layers
of the Transformer behave differently. Shallow layers focus
more on the edge of input images and deep layers focus
more on the center.

E. Combining Results of Different Heads
In this section, we introduce the techniques we propose to
nontrivially combine the importance score distribution of
different heads from the WPR algorithm.

E.1. Emphasizing Informative Region

Different heads in an encoder layer usually pay attention to
different parts of the input image, as shown in Fig. 5. For
the input image of a boy holding a fish, some heads pay
more attention to the body of this boy, some to the head of
this boy, and some to the fish in hand.

We propose EIR to address this issue. Suppose there are
three heads in all and the importance scores of tokens A, B,
and C are [9,9,9], [9,0,0], [3,3,3], respectively. The ideal
importance order is A > B > C. Table 1 shows the out-
come of application of different importance score calcula-
tion methods. The traditional averaging method assigns the
same importance to tokens A and B. If we only select the
highest score across all heads, tokens A and B will be as-
signed the same importance, which is also not desired. The
proposed EIP technique balances the two situations and re-

Table 1. Application of different importance score calculation
methods to the example.

Importance Score Average{Si} max{Si} EIP

Token A 9 9 5.2
Token B 3 9 3
Token C 3 3 1.7
Rank A > B = C A = B > C A > B > C

sults in the ideal importance order.

E.2. Variance-based Head Filter

The importance scores given by the WPR algorithm may
converge to an undesired distribution. Two typical exam-
ples are shown in Fig. 6. Tokens at the edge of the input
image get very high importance scores in Fig. 6(b) and the
importance score distribution in Fig. 6(c) is nearly uniform.
We introduce VHF to mitigate the negative impact of these
heads.

F. Downstream Tasks
Table 2 shows the number of categories and test instances in
the selected datasets. DTD is a describable textures dataset;
Indoor67 is an indoor scene recognition dataset; CUB200 is
a challenging dataset of 200 bird species. The other datasets
have self-explanatory names.

3

Figure 4. Importance score distributions averaged over thousands of images. The first row is derived from the first layer and the second
(third) row from the 10th (11th) layer of the DeiT-S model.

Figure 5. The distribution of importance score from different heads for an input image: (a) an image of a boy holding a fish and (b)
importance score distributions. The results are obtained by the WPR algorithm with 30 iterations in the tenth layer of the DeiT-S model.

Figure 6. Examples of undesired importance score distributions
in certain heads obtained by the WPR algorithm: (a) input image,
(b) second head in the second layer of the DeiT-S model, and (c)
fourth head in the third layer of the DeiT-S model.

The experimental results are shown in Table 3. Zero-
TPrune outperforms baselines on most datasets, indicating
its strong transfer learning capability after pruning. ToMe
has worse performance on small-sized models due to a lack
of enough layers to merge tokens gradually.

Table 2. Datasets for downstream image classification.

Datasets #Categories #Test Instances

Flowers [13] 102 6149
Pets [14] 37 3669
DTD [3] 47 1880
Indoor67 [15] 67 1340
CUB200 [18] 200 5794
Aircrafts [12] 100 3333
Cars [10] 196 8041

G. Ablation Experiments

In this section, we show results for further ablation experi-
ments we performed. We explore the convergence speed of
WPR and determine the appropriate number of iterations for
each layer in Section G.1. Then we identify a good enough
variance threshold for VHF in Section G.2. Furthermore,
we describe optimal design choices in the S-stage in Sec-

4

Table 3. Performance of pruned models on downstream tasks.

Model GFLOPS Flowers Pets DTD Indoor67 CUB200 Aircrafts Cars

Deit-T 1.26 97.3 88.6 73.2 75.6 76.8 78.7 90.3
+ ATS 0.90 94.6 86.1 71.0 72.9 73.8 76.0 88.4
+ ToMe 0.90 93.2 84.7 69.9 71.6 72.9 75.2 87.1
+ Zero-TP 0.91 95.1 86.9 70.9 73.7 74.4 76.7 88.2

Figure 7. The importance score distributions of tokens in 2,560 images. The distribution changes with both the number of iterations and
layer location: (a) layer 2, (b) layer 5, and (c) layer 12 in DeiT-S.

tion G.3, demonstrate the performance of Zero-TPrune-uni
in Section G.4, and discuss hyperparameter search in Sec-
tion G.5.

G.1. Convergence Speed of the WPR Algorithm

It is computationally expensive to check whether the WPR
algorithm converges after each iteration. Thus, it would be
desirable if we could determine the number of its iterations
in advance. In order to do so, we need to derive the gen-
eral convergence behavior of the WPR algorithm. Fig. 7
shows the importance score distributions of tokens in 2,560
images. In the shallow layers, such as the first layer, the dis-
tributions corresponding to 30 iterations and five iterations
are obviously different. This indicates that five iterations
are not enough to make the WPR algorithm converge in the
shallow layers. On the other hand, in the deep layers, such
as the 12th layer, the distribution corresponding to 30 iter-
ations is quite similar to the distribution corresponding to
just one iteration. This means that one iteration is enough
to make the WPR algorithm converge in the deep layers. In
addition, in the fifth layer, five iterations are enough to make
it converge.

To quantitatively verify the assertions we made above,
we calculate the KL divergence between the importance dis-
tribution given by 30, 5, 1 iteration(s) and that given by 50
iterations in different layers. The results are shown in Fig. 8.

Thus, to ensure convergence, we set the number of iterations
to 30-50, 5-10, and 1 in the first three layers, medium lay-
ers, and last three layers, respectively. Another interesting
thing to note is that the Transformer model and the WPR
algorithm assign low-importance scores to most tokens in
the deep layers.

2 4 6 8 10 12
Layers

0.0

0.5

1.0

1.5

2.0

2.5

KL
 d

iv
er

ge
nc

e
to

 5
0

ite
rs

1e6

30 iters
5 iters
1 iter (ave)

Figure 8. The KL divergence between the importance score distri-
bution given by different numbers of iterations and that given by
50 iterations in different layers. The used backbone is DeiT-S.

5

G.2. Variance Thresholds for VHF

To exclude noise from heads that converge to undesired im-
portance score distributions (as shown in Fig. 6), we pro-
pose VHF and set minimum and maximum thresholds for
the variance of head distributions. We perform an ablation
experiment to determine the optimal variance range. The
pruning configuration is shown in Table 4. We then use ran-
dom initialization and beam search (k = 2) to find a good
enough variance range setting. The results are shown in
Fig. 9, which points to the range [0.01,0.7].

Table 4. Pruning configuration used to search for optimal variance
thresholds.

Pruning Layers 0 2 4 6 8 10

Retention Rates 0.9 0.9 0.85 0.8 0.7 0.65
Iterations 50 50 5 5 1 1

Figure 9. Results obtained in the process of searching for optimal
thresholds. A larger blue bubble represents higher accuracy with
that setting.

G.3. Optimal Design Choices in the S-stage

As discussed in Section 3.3 of our main paper, the design
space of the S-stage is composed of three dimensions: (1)
source of feature vectors, (2) partitioning method, and (3)
similarity metric. We find that the optimal choice is (1) key
matrix, (2) sequential (prune unimportant part), and (3) co-
sine similarity, respectively. This is the default setting in
the following experiments unless otherwise noted. For the
results in this section, pruning layers are inserted after the
[1,3,6,9,11]-th layer with a retention rate of [1,0.9,0.8,0.7,1]
and #iterations of [30,5,5,1,1] in the I-stage, and 10 tokens
are pruned in each S-stage. Note that all results in this sub-
section are augmented by the CLS token by assigning it an
importance score that is

√
N times larger than other tokens

during initialization in the I-stage, where N is the number
of tokens.

Multi-Head
Attention

Add
&

Norm

Feed
Forward

Add
&

Norm

1

2

3

4

5

1 Key 2 Query 3 Value 4 Xpre 5 X

Figure 10. Potential feature vectors that can be used to represent
tokens.

Table 5. Ablation experiment results for the source of feature
vectors.

Feature Acc@top1 GFLOPS

Xpre 79.113% 3.08
X 79.082% 3.08
K 79.351% 3.08
Q 79.205% 3.08
V 79.097% 3.08

Feature vectors: As shown in Fig. 10, feature vectors
that represent tokens can be the corresponding vectors in
the Key matrix, Query matrix, Value matrix, intermediate
embedding vectors in the Xpre matrix, or output embedding
vectors in the X matrix. We maintain the other settings and
change the feature vectors used. The performance of pruned
models is shown in Table 5. It indicates that the Key matrix
is the optimal source of feature vectors.

Partitioning method: After ranking tokens according
to their importance (e.g., token {1,2,3,4,5,6}; token 1 has
the highest score and token 6 has the lowest), we choose
from the following options: (i) Alternate: alternatively as-
sign them to Group A and B, then the average token im-
portance in two groups is nearly equal (e.g., A : {2, 4, 6},
B : {1, 3, 5}); (ii) Sequential-U: assign the less important
half of tokens to Group A and the other half to Group B,
which means we sequentially partition tokens and prune the
unimportant part (e.g., A : {4, 5, 6}, B : {1, 2, 3}); (iii)
Sequential-I: assign the more important half of tokens to
Group A and the other half to Group B, which means we
sequentially partition tokens and prune the important part
(e.g., A : {1, 2, 3}, B : {4, 5, 6}), (iv) Random: randomly
assign them to Group A or B; and (v) No partition: assign
all tokens to both groups without partitioning. To evalu-
ate the effectiveness of these options, we conducted experi-
ments while keeping all other settings at default values. The
results are shown in Table 6, where Sequential-U represents
choice (ii) and Sequential-I represents choice (iii). It clearly
indicates that Sequential-U is preferable to all the other par-
titioning methods.

6

Similarity metric: We experimented with several met-
rics for measuring similarity between two vectors, including
cosine similarity, dot product, and Minkowski distance with
different p values. When using Minkowski distance to mea-
sure similarity between vectors, we negated the distance to
account for the fact that a longer distance indicates a lower
similarity. The results of these experiments, shown in Ta-
ble 7, indicate that cosine similarity is the best choice.

Table 6. Ablation experiment results for choosing the partitioning
method.

Method Acc@top1 GFLOPS

Random 79.055% 3.08
Alternate 79.179% 3.08
Sequential-U 79.351% 3.08
Sequential-I 78.898% 3.08
No partition 78.422% 3.08

Table 7. Ablation experiment results for choosing the similarity
metric.

Similarity Acc@top1 GFLOPS

dot product 79.257% 3.08
cosine 79.351% 3.08
Manhattan (p = 1) 79.208% 3.07
Euclidean (p = 2) 79.224% 3.07
Minkowski (p = 3) 79.246% 3.07
Minkowski (p = 4) 79.273% 3.07
Minkowski (p = 5) 79.189% 3.07
Minkowski (p = ∞) 79.092% 3.07

G.4. Performance of Zero-TPrune-uni

The ablation experimental results of Zero-TPrune-uni are
shown in Table 8. The backbone for deployment is DeiT-S,
and the model is evaluated on the ImageNet validation set.

G.5. Hyperparameter Search

The performance of Zero-TPrune, in terms of accuracy, is
not sensitive to the hyperparameter setting as long as the
number of pruning layers is more than two and the vari-
ance of their pruning rate is limited (i.e., the pruning pro-
cess is not concentrated on one or two layers). We ran-
domly choose different hyperparameter settings and show
their performance in Fig. 11. This figure indicates that ran-
domly selecting a hyperparameter setting does not hurt our
performance much.

For a fair comparison with baselines, we do not use
the best performance we can find through hyperparameter

Figure 11. One hundred randomly selected hyperparameter set-
tings and their corresponding performance after being applied to
DeiT-S without fine-tuning

search. Instead, we use a hyperparameter setting with ap-
proximately the average performance among the search re-
sults. It is also close to setting a constant pruning rate across
different layers.

Even the full hyperparameter search process is much
faster than fine-tuning. For hyperparameter search, we only
need to perform inference. Specifically, for MCS, we ran-
domly selected 1024 images in the validation dataset for
each hyperparameter setting and obtain the corresponding
accuracy. We tried 2000 settings on a single A100 GPU,
which only required 3.8 hours. On the contrary, fine-tuning
DeiT-S on the ImageNet dataset requires 144 A100 GPU
hours.

H. Comparison with State-of-the-Art Methods

In this section, we first supplement comparisons with more
depth-adaptive methods in Section H.1 and then compare
Zero-TPrune with more straightforward attention-based to-
ken ranking methods in Section H.2. Finally, we provide
performance comparisons with state-of-the-art fine-tuning-
free token pruning methods in terms of throughput in Sec-
tion H.3.

H.1. Depth-Adaptive Methods

Token pruning can be seen as a fine-grained variant of the
depth-adaptive transformer, such as layer dropping. One of
our baselines, A-ViT [19], is a token-wise depth-adaptive
method. Instead of inserting pruning layers and setting
pruning rates for them, it calculates the halting probability
per token at each layer and halts tokens at adaptive depth.
Zero-TPrune w/o fine-tuning competes with and even out-
performs A-ViT w/ fine-tuning, as shown in Fig. 6 of our

7

Table 8. Contribution breakdown of the different techniques employed in Zero-TPrune-uni. The “-uni” suffix represents uniform initializa-
tion in the I-stage.

Acc@1 Params GFLOPS Throughput (img/s) Method

79.8% (base) 22M 4.55G 1505.9 Unpruned model
76.8% (-3.0%) 22M 3.08G 2164.4 random drop
78.0% (+1.2%) 22M 3.08G 2142.3 WPR
78.2% (+0.2%) 22M 3.08G 2139.6 WPR + EIR
78.4% (+0.2%) 22M 3.08G 2107.2 WPR + EIR + VHF (I-stage)
78.9% (+0.5%) 22M 3.08G 2066.4 I-stage + S-stage
79.1% (+0.2%) 22M 3.08G 2062.9 I-stage + S-stage + MC Simulation

Table 9. Comparison with depth-adaptive methods on the DeiT-T
model. The performance of Zero-TPrune is obtained without fine-
tuning, while other results are obtained with fine-tuning.

Method Acc@top1 GFLOPS

DeiT-T [17] 71.3% 1.3

ACT [8] 71.0% 1.0
Confidence threshold [11] 65.8% 1.1
Similarity gauging [6] 69.4% 1.1
PonderNet [1] 66.2% 1.0
DynamicViT [16] 70.9% 0.9
A-ViT [19] 71.0% 0.8
Zero-TPrune w/o FT 70.4% 0.9

main paper. A-ViT outperforms prior art on depth-adaptive
methods. We adopt corresponding results and compare
them with Zero-TPrune in Table 9. Note that the result of
Zero-TPrune is obtained off the shelf without fine-tuning,
while other results are obtained after fine-tuning the adap-
tive models.

H.2. Attention-based Token Ranking Methods

One of our baselines, ATS [7], is an attention-based impor-
tance ranking method. It uses the attention given by the CLS
token to determine the importance of tokens. Simply aver-
aging attention scores in the attention matrix is the baseline
of ATS (Fig. 3 in [7]) and performs worse than ATS. For the
ablation study, we replace our I-stage with top-k importance
selection based on (1) CLS token attention, (2) average at-
tention, and (3) accumulated average attention to improve
the effectiveness of our method. Results are shown in Ta-
ble 10. The batch size is 512 and our S-stage is enabled
in all settings. We adjust pruning rates slightly to match
the FLOPs cost of different settings. Our proposed I-stage
uses information from all tokens while reducing noise from
unimportant tokens, leading to better performance.

Table 10. Performance of pruned DeiT-S models without fine-
tuning. Throughput is measured on a single NVIDIA A100 GPU.

Method Acc@top1 GFLOPS Throughput(img/s)

DeiT-S 79.8% 4.55 1505.9
CLS Attn. 78.9% 3.00 2179.3
Ave. Attn. 78.4% 2.99 2185.2
Accu. Ave. Attn. 78.5% 2.97 2189.2
I-stage 79.4% 2.97 2188.4

1800 2000 2200 2400 2600 2800
Throughput (img/s)

73

74

75

76

77

78

79

To
p-

1
Ac

cu
ra

cy
 (%

)

ATS
ToMe-uni
ToMe
Zero-TPrune-uni
Zero-TPrune

Figure 12. Performance comparison between Zero-TPrune and
state-of-the-art fine-tuning-free methods. The applied Trans-
former backbone is DeiT-S.

H.3. Fine-Tuning-Free Token Pruning Methods

We conduct experiments on DeiT-S to show the superior-
ity of Zero-TPrune over state-of-the-art fine-tuning-free to-
ken pruning/merging methods. The experimental results
showing the trade-off between accuracy and throughput are
shown in Fig. 12.

I. Comparison between Scaling and Pruning
As shown in Table 11, Zero-TPrune cannot outperform all
baseline methods when a relatively high pruning rate (e.g.,

8

Figure 13. Off-the-shelf performance of ViT models under ToMe [2]. This figure is adopted from [2].

Table 11. Performance of pruned AugReg, LV-ViT, and SWAG
models without fine-tuning. SWAG models perform inference on
384px images.

Method Acc@top1 GFLOPS

LV-ViT-M 84.0% 12.7
+ ATS 80.9% 6.4

+ ToMe 81.6% 6.3
+ Zero-TP 81.4% 6.3

MAE 83.62% 55.4
+ATS 78.39% 29.1

+ToMe 78.95% 28.8
+Zero-TP 78.94% 28.6

SWAG 85.30% 55.6
+ATS 81.03% 27.8

+ToMe 84.59% 28.4
+Zero-TP 84.04% 28.3

reduce GFLOPS by 50%) is applied to large models (e.g.,
DeiT-L). However, in this case, scaling to a smaller model
is often a better choice. ToMe outperforms Zero-TPrune
when large models are aggressively pruned. Thus, we use
the results from ToMe to illustrate this point.

In Fig. 13, ToMe is applied to different ViT backbones
with different configurations. Different points on the same
curve represent different configurations applied to the same
backbone. The first point from the left on each curve repre-
sents the unpruned model. Aggressively pruning a model
implies switching from the first point from the left on a
given curve to the last point on this curve, which increases
throughput but suffers from lower accuracy. Switching from
the first point from the left on a given curve to the first point
on another curve directly scales the size of the model with-
out pruning. Aggressively pruning large models (ViT-L and
ViT-B) underperforms scaling them in terms of both accu-
racy and throughput. On the contrary, for the ViT-S model,

although scaling outperforms aggressive pruning in terms
of throughput, it achieves lower accuracy than aggressive
pruning.

9

References
[1] Andrea Banino, Jan Balaguer, and Charles Blundell. Ponder-

Net: Learning to Ponder. arXiv preprint arXiv:2107.05407,
2021.

[2] Daniel Bolya, Cheng-Yang Fu, Xiaoliang Dai, Peizhao
Zhang, Christoph Feichtenhofer, and Judy Hoffman. To-
ken Merging: Your ViT But Faster. arXiv preprint
arXiv:2210.09461, 2022.

[3] Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos, Sammy
Mohamed, and Andrea Vedaldi. Describing Textures in the
Wild. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 3606–3613, 2014.

[4] Marco Cuturi, Olivier Teboul, and Jean-Philippe Vert. Dif-
ferentiable Ranking and Sorting Using Optimal Transport.
Advances in Neural Information Processing Systems, 32,
2019.

[5] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, et al. An Image is Worth 16x16 Words: Trans-
formers for Image Recognition at Scale. arXiv preprint
arXiv:2010.11929, 2020.

[6] Maha Elbayad, Jiatao Gu, Edouard Grave, and Michael Auli.
Depth-Adaptive Transformer. arXiv preprint, 2019.

[7] Mohsen Fayyaz, Soroush Abbasi Koohpayegani,
Farnoush Rezaei Jafari, Sunando Sengupta, Hamid
Reza Vaezi Joze, Eric Sommerlade, Hamed Pirsiavash, and
Jürgen Gall. Adaptive Token Sampling for Efficient Vision
Transformers. In Proceedings of the European Conference
on Computer Vision, pages 396–414. Springer, 2022.

[8] Alex Graves. Adaptive Computation Time for Recurrent
Neural Networks. arXiv preprint arXiv:1603.08983, 2016.

[9] Sehoon Kim, Sheng Shen, David Thorsley, Amir Gholami,
Woosuk Kwon, Joseph Hassoun, and Kurt Keutzer. Learned
Token Pruning for Transformers. In Proceedings of the 28th
ACM SIGKDD Conference on Knowledge Discovery and
Data Mining, pages 784–794, 2022.

[10] Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei.
3D Object Representations for Fine-Grained Categorization.
In Proceedings of the IEEE International Conference on
Computer Vision Workshops, pages 554–561, 2013.

[11] Weijie Liu, Peng Zhou, Zhe Zhao, Zhiruo Wang, Haotang
Deng, and Qi Ju. FastBERT: a Self-Distilling BERT with
Adaptive Inference Time. arXiv preprint arXiv:2004.02178,
2020.

[12] Subhransu Maji, Esa Rahtu, Juho Kannala, Matthew
Blaschko, and Andrea Vedaldi. Fine-Grained Visual Clas-
sification of Aircraft. arXiv preprint arXiv:1306.5151, 2013.

[13] Maria-Elena Nilsback and Andrew Zisserman. A Visual Vo-
cabulary for Flower Classification. In Proceedings of the
IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, pages 1447–1454, 2006.

[14] Omkar M. Parkhi, Andrea Vedaldi, Andrew Zisserman, and
C.V. Jawahar. Cats and Dogs. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pages 3498–3505, 2012.

[15] Ariadna Quattoni and Antonio Torralba. Recognizing Indoor
Scenes. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 413–420, 2009.

[16] Yongming Rao, Wenliang Zhao, Benlin Liu, Jiwen Lu, Jie
Zhou, and Cho-Jui Hsieh. DynamicViT: Efficient Vision
Transformers with Dynamic Token Sparsification. Advances
in Neural Information Processing Systems, 34:13937–13949,
2021.

[17] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco
Massa, Alexandre Sablayrolles, and Hervé Jégou. Training
Data-Efficient Image Transformers & Distillation through
Attention. In Proceedings of the International Conference
on Machine Learning, pages 10347–10357. PMLR, 2021.

[18] Catherine Wah, Steve Branson, Peter Welinder, Pietro Per-
ona, and Serge Belongie. The Caltech-UCSD Birds-
200-2011 Dataset. California Institute of Technol-
ogy, https://www.vision.caltech.edu/datasets/cub 200 2011/,
2011.

[19] Hongxu Yin, Arash Vahdat, Jose M. Alvarez, Arun Mallya,
Jan Kautz, and Pavlo Molchanov. A-ViT: Adaptive To-
kens for Efficient Vision Transformer. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 10809–10818, 2022.

10

	. The I-S Pattern and the I-S-I Pattern
	. Overwhelming of the Major Group with the I-S Pattern
	. Comparison

	. Attention Probability Matrix
	. Optional Training Paradigm after Pruning
	. Visualization
	. An Input Image Example
	. Averaged Importance Distribution over Thousands of Images

	. Combining Results of Different Heads
	. Emphasizing Informative Region
	. Variance-based Head Filter

	. Downstream Tasks
	. Ablation Experiments
	. Convergence Speed of the WPR Algorithm
	. Variance Thresholds for VHF
	. Optimal Design Choices in the S-stage
	. Performance of Zero-TPrune-uni
	. Hyperparameter Search

	. Comparison with State-of-the-Art Methods
	. Depth-Adaptive Methods
	. Attention-based Token Ranking Methods
	. Fine-Tuning-Free Token Pruning Methods

	. Comparison between Scaling and Pruning

