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This supplementary material provides additional details and
comparisons of our implementations. These include:
• A detailed description of our data collection process.
• Further statistical analysis of the dataset.
• Quantitative results and analysis of the generalization ca-

pabilities of our method and the state-of-the-art models,
trained on MMD (Ours) and tested on VMD-D [6].

• Additional qualitative results showcasing the perfor-
mance of our method, and

• A video highlighting the results of the ablation study.
• Evaluation on Outdoor Video
• Design Choice of Optical Flow Coherence Block

1. Motion Mirror Dataset
1.1. Dataset Creation

We embarked on the development of a comprehensive video
mirror dataset tailored for real-world applicability. This
dataset comprises thirty-seven 9-second videos (sequence
of images without audio) intentionally capturing diverse
lighting and environmental conditions. An essential consid-
eration was incorporating consistent motion in these videos
to simulate scenarios akin to those encountered in drone
footage.

To compile the dataset, we recruited six individuals
who voluntarily participated in the data collection process.
These participants received explicit instructions to use con-
temporary mobile phone cameras, ensuring a minimum
video resolution of 1080p (1920x1080px). They were di-
rected to record mirror videos in various locations, includ-
ing homes (specifically bathrooms, living rooms, bedrooms,
and hallways), department stores, gyms, and within cars.
Additionally, participants were guided to record in differ-
ent lighting conditions, spanning daytime, natural and un-
natural lighting, night-time, and darker environments. The
dataset encompasses a wide range of features and condi-
tions, making it relevant for video mirror detection in di-
verse real-world scenarios.

The manual annotation process was carefully executed.

Every third frame of the videos underwent annotation,
and interpolation between frames was performed using the
method outlined in [1]. Furthermore, a depth-first-search
algorithm was computed on each frame to obtain edge fea-
tures. Each annotated frame, including mirror and edge
annotations, underwent manual verification to ensure it at-
tained ground truth quality.

2. Dataset Comparison

Previously, Jiaying Lin et al. [6] proposed the VMD-D
dataset, which consists of 269 (≈1.9s) videos. These videos
contain mostly stationary and abruptly moving scenes from
department stores. Our proposed dataset MMD con-
sists of videos that are 4.8x longer, containing exam-
ples from diverse scenes (e.g., kitchens, hallways, liv-
ing/bath/bedrooms), with various mirror occlusions, multi-
mirrors, and lower contrast between mirror/non-mirror.

Table 1 compares some statistical information between
the proposed MMD dataset and the existing VMD-D
dataset.

Dataset FPS Total Frames Mean Video Length Videos
Frames Seconds Training Testing

VMD-D 30 14987 55.71 1.86 143 126
MMD (Ours) 30 9727 262.77 8.75 18 19

Table 1. Statistical analysis table comparing our proposed dataset
(MMD) with the existing dataset (VMD-D) [6].

3. Generalization on VMD-D dataset [6]

We further compare the generalizing performance of our
proposed model, MG-VMD, with VMD-Net [6]. We train
both models on our dataset (MMD) and test on the VMD-D
[6] dataset. Table 2 shows that the generalization perfor-
mances of the two models are very close, with ours slightly
better on Accuracy and MAE.
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Model Accuracy↑ MAE↓ Fβ↑
Ours 0.666342 0.333658 0.385283

VMD-Net 0.654699 0.3453 0.38978

Table 2. Quantitative results table comparing our proposed method
with the state-of-the-art VMD-Net [6]. The two models are trained
on our proposed dataset (MMD) and tested on the VMD-D [6]
dataset directly. The results show that the generalization ability of
the two models are similar. Red and Blue indicate the best and
second-best performances.

4. Further Qualitative Results on MMD
Figure 12 further presents more qualitative results, compar-
ing our proposed model with eight state-of-the-art meth-
ods from Video Salient Object Detection and Image-
Based/Video Mirror Detection.

When evaluating on the video mirror detection task, our
method demonstrates better temporal consistency compared
to VMD-Net [6]. This is evident in the 3rd - 8th rows, and
11th to 12th rows. This enhanced temporal consistency can
be attributed to our model leveraging inconsistent motion
cues, and the use of the optical flow coherence block and co-
herence loss. Single-frame mirror detection method (PMD-
Net [5]) occasionally fails to detect mirrors in these videos,
specifically in the 11th row.

In addition, our method exhibits greater robustness and
stability in identifying mirror regions and their boundaries
compared to video salient object detection methods.

4.1. Qualitative Video Showcase

Along with this supplementary material, we present
a video titled "MG-VMD qualitative MMD.avi",
demonstrating the qualitative performance of our video mir-
ror detection method under the ablation study. The video
comprises six rows, with the last four each representing a
different stage of our method, with the inclusion of the re-
spective Motion-guided Edge Detection Module (MEDM)
and Motion Attention Module (MAM):
1. Current Frame
2. Ground Truth
3. Baseline
4. Baseline + MEDM
5. Baseline + MAM
6. MG-VMD (combining MEDM and MAM)

The samples featured in the video are drawn from our
proposed MMD dataset. The final exported video main-
tains a frame rate of 30 fps, and each prediction map has a
resolution of (224×224px).

5. Evaluation on Outdoor Video
Our proposed method primarily focuses on indoor scenes
containing mirrors. We note that mirrors are more com-

Video MG-VMD VMD-Net

Table 3. Comparison of qualitative results between our proposed
method (MG-VMD) and VMD-Net [6] on outdoor scenes featur-
ing mirror regions.

monly found indoors. Indoor mirrors are specifically useful
for indoor 3D reconstruction and robotic navigation. How-
ever, in Table 3, we show that our method performs better
than VMD-Net on handling outdoor scenes containing mir-
ror regions.

6. Justification of Design Choice of Optical
Flow Coherence Block

Models Accuracy↑ MAE↓ Fβ↑ IoU↑
N-1 to N-2 0.833256 0.166744 0.76463 0.632305
No Flow Extrapolation 0.846201 0.153799 0.840227 0.681888
MG-VMD (Ours) 0.872532 0.127468 0.869419 0.72513

Table 4. Qualitative results table comparing our proposed method,
against different ways of modelling motion coherence, trained and
validated on our proposed MMD dataset. Red, Blue and Green
indicate the best, second and third best performances, respectively.

We offer empirical justification for our design choices
within the Optical Flow Coherence block through quanti-
tative evaluation of various motion-driven designs. Table
4 demonstrates that our current linear extrapolation design
outperforms alternative methods in modeling cohesive mo-
tion for video mirror detection. In Table 4 Row 1, we note
that the performance of using optical flow from N-1 to N-2
(“N-1 to N-2”) to penalize the inconsistency between mir-
ror detection results performs worse than our linear extrap-
olation method. In addition, in Table 4 Row 2, we show
that our linear extrapolation performs better than a dual in-
ference of the frozen deep learning optical flow estimation
for each branch (N-2 to N-1) and (N-1 to N) (“No Flow
Extrapolation”). We find that such dual inference accumu-
lates errors between optical flow vector fields. Overall, we
observe that both of these methods suffer from pixel-level
errors in optical flow vector fields, attributed to low contrast



between mirror and non-mirror regions in our dataset, as
well as frozen weights in the optical flow. Our simple lin-
ear extrapolation design, however, stabilizes flows, reduces
pixel-level errors, and ensures temporal consistency within
our model.
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Figure 12. A further comprehensive qualitative results table comparing our proposed method with state-of-the-art video salient object
detection, as well as image-based/video mirror detection (namely, FS-Net [2], MGA [4], ALGRF [8], F3Net [3], UFO [7], PMD-Net [5],
MirrorNet [9], VMD-Net [6]). The models were trained and validated on our proposed MMD dataset.


