
Finsler-Laplace-Beltrami Operators with Application to Shape Analysis

Supplementary Material

This supplementary material is organized as follows:
Sec. 1 provides some proofs concerning properties of
Randers metrics mentioned in the main paper: positivity,
dual formula, and bounded norm of the dual Randers vector
field.
Sec. 2 details the proof of Proposition 1.
Sec. 3 gives additional details about runtime in our experi-
ments.
Sec. 4 shows additional visual results of anisotropic kernels
and shape correspondence.

1. Classical proofs for the Randers metric
The proofs in this section of the supplementary mate-

rial are not novel in the Randers metric community. The
purpose of putting them here is to present a self-contained
theory that is fully and simply explained, avoiding the need
for readers to search through other challenging mathemati-
cal papers. For prior existing proofs, see for example [32].
Note that errors exist in various reference materials, which
further justifies rederiving the proofs. For instance, in [32]
the formulae for the dual Randers metric in Prop. 5.1 are
incorrect.

1.1. Proof of Randers metric positivity

Any vector in the tangent space TxX can be given in the
form M(x)�1

v. We can then write
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Using the Cauchy-Schwartz inequality, we get
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The assumption on ! provides kM(x)�
1
2!(x)k < 1, thus

as soon as v 6= 0, we get Fx(M(x)�1
v) > 0.

1.2. Proof of dual Randers metric formulae

For conciseness, we drop the explicit dependence on x.
The dual Finsler metric F⇤ of the Randers metric F is given
by Definition 3. By positive homogeneity of F , it is also
given by
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⇢
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; b 6= 0

�
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As such, 1
F⇤(v) = min
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o
, and once again by

homogeneity we have
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F⇤(v)
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The Lagrangian for this constrained optimization problem
is given by L(b, µ) = F(b) + µhv, bi. Computing the gra-
dient @L

@b
and setting it to 0 to satisfy the KKT conditions,

the optimal b, denoted b
⇤, satisfies

M
b
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On one hand, by computing the scalar product with b
⇤, and

recalling that the constraint enforces hv, b⇤i = 1, and re-
calling the formula for the Randers metric (Eq. (19)) we get
µ = �F(b⇤). Since b

⇤ solves the optimization problem in
Eq. (44), we have

µ = � 1

F⇤(v)
. (46)

On the other hand, we can compute k! + µvkM�1 from
Eq. (45)

k! + µvkM�1 =
kMb

⇤kM�1

kb⇤kM
= 1. (47)

Taking the square, we get a degree two polynomial for
which µ is a root
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M�1 > 0, the roots are given by
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Clearly, µ+ > 0 and µ� < 0 for v 6= 0, yet µ < 0 following
µ = �F(b⇤) as the metric is always positive. Therefore
µ = µ�, and then by inverting Eq. (46) we get
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Figure 5. Finsler-based anisotropic kernels g↵✓,x centered at the
same point x with different rotation angles ✓ equal to 0 (left) and
3⇡
8 (right). Here the filter is chosen to be the Chebychev polyno-

mial ĝ(�) = T5(�).

where we used the classical trick 1
x+

p
y
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the square root from the denominator. We now recognise
the dual metric F⇤ of the Randers metric F as a Randers
metric associated to (M⇤
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1.3. Proof of k!⇤kM⇤�1(x) < 1

For conciseness, we drop the explicit dependence on x

and we denote !̃ = M
� 1

2!. Recalling that M is symmet-

ric and that ↵ > 0, and plugging M
�1

! = M
� 1

2 !̃ into
Eqs. (22) and (23), we get
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We then invoke the Sherman-Morrison formula�
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2. Proof of Proposition 1
For conciseness, we drop the explicit dependence on

x. Denoting P(u) = F⇤(ru)rF⇤(ru), the Finsler heat
equation is given by

@tu = div(P(u)). (57)

Differentiating the Finsler dual metric Eq. (24), we have
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⇤
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Given the initial condition, the solution u will approxi-
mately satisfy F⇤(ru) = 1 in short time, i.e. for small
time steps t. As such, in short time we have
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Following [5] (Corrolary 2.10), if u follows this condition,
then there exists a positive scalar � giving the proportional-
ity between the following vectors
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This is due to the fact that ru belongs to the shared 0-level
set of functions of v on the tangent space f1(v) = kvkM⇤ +
!
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share the same sign for all v, and with gradients computed
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have that
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Another calculation gives us that
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Under the assumption that the metric is close to Rie-
mannian, i.e. k!k is small, then we can approximate
krukM⇤ = F⇤(ru) = 1, and thus approximate the pro-
portionality coefficient � by

� =
2

1 + krukM⇤
= 1. (68)

Using Eqs. (59) and (60), we conclude that for this partic-
ular initialisation the heat equation becomes in short time

@tu = div
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3. Implementation and runtime
In terms of runtime and memory, the difference with [29]

comes from a small overhead due to computing the metric
as preprocessing. Our additional actions involve cheap ba-
sic operations on 3 ⇥ 3 matrices, e.g. inversion (Eq. (37))
and multiplication (Eqs. (22), (23), (36) and (38)). Note
that further preprocessing operations, e.g. Eq. (39), are the
same as those in [29] and thus have the same cost. For ex-
ample, our implementation on a CPU ‘2 GHz Intel Core i5’
takes on average 1.70s per shape in the FAUST (Remeshed)
dataset (1.82s per shape in the SCAPE (Remeshed) dataset),
compared to 1.55s (resp. 1.76s) for [29]. Once this prepro-
cessing is performed, we obtain an anisotropic LBO dis-
cretised as a matrix (line 432) of the same size as in [29].
Therefore, runtime of the core shape-matching learning al-
gorithm is the same and is significantly longer, around 30s
per epoch for FAUST (Remeshed) (resp. 10s for SCAPE
(Remeshed)) on 1 GPU ‘Quadro P6000’.

4. Further visual results
4.1. Example kernels

We show in Fig. 5 two of our anisotropic kernels g↵✓,x

at different angles, when choosing a predetermined Cheby-
chev polynomial for its spectral decomposition.

4.2. More shape correspondence results
We display further visual shape correspondence results

in Figs. 6 to 9. Our method clearly outperforms FieldConv
while providing on par visual results to ACSCNN. The su-
periority of our method is revealed in the quantitative results
of the main paper.
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Figure 6. Visual shape correspondence results on the FAUST Remeshed dataset. The source shape is on the left, on which we perform
dense correspondence estimation on the shapes to the right, using either FieldConv, ACSCNN, or our approach.
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Figure 7. Visual shape correspondence results on the SCAPE Remeshed dataset. The source shape is on the left, on which we perform
dense correspondence estimation on the shapes to the right, using either FieldConv, ACSCNN, or our approach.



ACSCNN Ours

Figure 8. Visual shape correspondence results on the SHREC’16 Cuts dataset. The source shape is on the left, on which we perform
dense correspondence estimation on the shapes to the right, using either ACSCNN or our approach. FieldConv fails to provide meaningful
correspondence results on partial shapes so we do not display its qualitative performance.

ACSCNN Ours

Figure 9. Visual shape correspondence results on the SHREC’16 Holes dataset. The source shape is on the left, on which we perform
dense correspondence estimation on the shapes to the right, using either ACSCNN or our approach. FieldConv fails to provide meaningful
correspondence results on partial shapes so we do not display its qualitative performance.


