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This supplemental material is organized as follows:
Appendix A empirically complements our theoretical anal-
ysis of the hyperbolic distance in Proposition 2, and con-
firms the inter-class uniformity in the Poincaré ball.
Appendix B provides implementation details on calibrating
hyperbolic networks.
Appendix C details the hierarchical two-level label struc-
ture used throughout our experiments.
Appendix D provides additional qualitative examples from
other datasets (Cityscapes, Mappilary, IDD, ACDC, BDD
and Wilddash).

A. Norms and concavity
Recall from Sec. 4.1 that during training, the hyperbolic

likelihood,

p(ŷ := y | h) ∝ exp(ζy(h)) , (14)

where

ζy(h) :=
λc
ry∥wy∥√

c
arcsinh

(
2
√
c⟨−ry ⊕c h,wy⟩

(1− c∥−ry ⊕c h∥2)∥wy∥

)
,

(15)
is minimized via the cross-entropy loss. Equivalently [23],
Eq. (14) can be written as:

log p(ŷ := y | h) ∝ sign
(
⟨−ry ⊕c h, ay⟩

)
×

×
√

gcry (ay, ay) dH(h,H
c
y) .

(16)

Thus, the closer a hyperbolic embedding is to the border
(periphery) of the Poincaré ball, the higher its norm and
the class posterior. Indeed, when the embedding is located
between the gyroplane and the periphery of the Poincaré
ball, i.e. the term ⟨−ry ⊕c h, ay⟩ is strictly larger than zero,
p(ŷ := y | h) increases with the distance dH(h,H

c
y) be-

tween the embedding and the gyroplane.
We empirically confirm that hyperbolic embeddings end

up at the boundary of the Poincaré ball after model train-
ing. In Tab. 3, we compute the average norm of the em-
beddings for each class and find that the embedding norm

Class Average norm

Road 0.995 941 57
Sidewalk 0.995 935 76
Building 0.995 967 34
Wall 0.995 288 85
Fence 0.995 685 49
Pole 0.995 800 16
Traffic light 0.995 988 23
Traffic sign 0.995 781 03
Vegetation 0.995 964 70
Terrain 0.995 886 26
Sky 0.995 967 04
Person 0.995 909 56
Rider 0.995 988 13
Car 0.995 959 47
Truck 0.995 816 33
Bus 0.995 965 89
Train 0.995 361 07
Motorcycle 0.995 836 02
Bicycle 0.995 963 11

Table 3. The average norm of hyperbolic embeddings in the
Poincaré ball for each class. Note that the norms are close to 1.
Geometrically, this means that the embeddings reside at the pe-
riphery of the ball. Linking this observation to the concavity of
the hyperbolic distance (cf . Sec. 4.3) explains the uniformity in the
inter-classes distances, as a change in the embedding of a class, as
long as its norm is preserved, does not have a significant effect on
its relative distance to the embeddings of other classes.

in the Poincaré ball indeed tends to be close to 1, which in-
dicates close proximity of the embeddings to the Poincaré
ball’s boundary. Let us now recall the hyperbolic distance
from Eq. (8):

dH(h1, h2) = arcosh
(
1 + 2

∥h1 − h2∥2

(1− ∥h1∥2)(1− ∥h2∥2)

)
.

(17)
After network training, the class embeddings are well-
separated. The denominator (1 − ∥h1∥2)(1 − ∥h2∥2) be-
comes very small, hence the hyperbolic distance now oper-
ates at the high-end spectrum of the domain in Fig. 3 (i.e.
when x in Fig. 3 is large). It follows that the hyperbolic dis-
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(a) Measuring the coefficient of variation w.r.t. “Road” embeddings.
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(b) Measuring the coefficient of variation w.r.t. “Sky” embeddings.

Figure 5. The coefficient of variation of the distance between (a)
’Road’ embeddings (resp. (b) ’Sky’ embeddings) and the embed-
dings of other classes. The hyperbolic distance between the em-
beddings of a given class and the embeddings of other classes is
much more uniform than the respective Euclidean distance.

tance between embeddings of different classes tends to be
uniform. To demonstrate this empirically, we provide an ex-
ample analysis of the inter-classes distance for two classes,
’Road’ and ’Sky’. We compare the Poincaré ball model
and the Euclidean representation. For all embeddings in
the Poincaré ball (resp. Euclidean space) corresponding to
these two classes, we derive the distance to the embeddings
and to the gyroplanes (resp. hyperplanes) associated with
the other classes. Fig. 5a (resp. Fig. 5b) illustrates the
coefficient of variation (standard deviation divided by the
mean) of the distance between ’Road’ (resp. ’Sky’) embed-
dings and the embeddings of other classes, grouped by each
class. Fig. 6a (resp. Figure 6b) compares the coefficient
of variation of the distance between ’Road’ (resp. ’Sky’)
embeddings and the gyroplanes (for a hyperbolic space)
and hyperplanes (for a Euclidean space) associated to the
other classes. Observe that the coefficient of variation in
the hyperbolic case is substantially lower across the board,
which supports our analysis in the main text: The inter-class
distance between the Poincaré embeddings is substantially
more uniform than the embeddings in the Euclidean space.
The same conclusion holds w.r.t. other semantic categories.
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(a) Measuring the coefficient of variation of hyper-/gyroplanes distance
w.r.t. “Road” embeddings.
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(b) Measuring the coefficient of variation of hyper-/gyroplanes distance
w.r.t. “Sky” embeddings.

Figure 6. The coefficient of variation of the distance between
(a) ’Road’ embeddings (resp. (b) ’Sky’ embeddings) and gyro-
planes/hyperplanes of other classes. The hyperbolic distance be-
tween a given class and the gyroplanes of other classes is much
more uniform than the respective Euclidean distance.

B. Calibration in the Poincaré ball
A model is said to be calibrated when the predictive

probabilities correspond to the true probabilities [26]. Fol-
lowing the geometrical interpretation of Ganea et al. [23],
the predictive probabilities in hyperbolic networks corre-
spond to the logits after the hyperbolic multinominal logis-
tic regression. Consequently, this allows us to extend pop-
ular calibration methods in Euclidean space to the Poincaré
ball in a straightforward manner: Instead of considering the
Euclidean predictions – a softmax applied to Euclidean log-
its – we apply a softmax to hyperbolic logits. Formally, in a
hyperbolic space, the probability of class y ∈ {1, ..., k} for
hyperbolic output h is given by the softmax:

p(ŷ := y | h) = exp(ζy(h))∑k
i=1 exp(ζi(h))

, (18)

where k is the number of classes. Training is performed via
the cross-entropy loss, as in the Euclidean networks.

To evaluate the calibration quality, we follow Kull et al.
[33] to derive the class-wise Expected Calibration Error



Figure 7. Hierarchical taxonomy derived from Cityscapes [15],
divided in 7 parents (in pink) and 19 children (in orange). Same
hierarchy is used when testing on Mapillary [42], IDD [57], ACDC
[47], BDD [64] and Wilddash [66].

(cwECE). We partition predictions into M equally spaced
bins for each class {By,m}y=1,...,k

m=1,...,M and take a weighted
average of the difference between the accuracy and confi-
dence for each bin:

cwECE =
1

k

k∑
y=1

M∑
m=1

|By,m|
n

|accy(By,m)−confy(By,m)| ,

(19)
where n is the total number of samples of a given class
across all bins. confy(By,m) and accy(By,m) are, respec-
tively, the average prediction of class y probability and the
actual ratio of class y in bin By,m. cwECE represents the
average gap between the predicted confidence and the ex-
pected accuracy, averaged over all classes.

C. Hierarchical taxonomy
For reference, in Fig. 7 we provide the hierarchical tax-

onomy used in our experiments. It follows the same struc-
ture from previous work [34] and comprises 7 parent cate-
gories (Level 1) and 19 child categories (Level 0).

D. Qualitative results
Here, we provide additional qualitative analysis. Follow-

ing the same layout as in Fig. 4, the additional examples
here illustrate (top-down): label predictions, pixel-level ac-
curacy, and confidence maps. Results on Cityscapes (in-
domain) in Fig. 8 show that each model has generally high
accuracy and calibration quality. Recall from our evaluation
in the main text that parent-level predictions for flat mod-
els are on par with hierarchical models (HSSN) even when
the hierarchical model has better accuracy on child nodes.
Moreover, all models are well calibrated in the in-domain
settings both on the parent and child levels.

Under the domain shift, even of a moderate nature, we
already observe the advantage of flat models to HSSN. In
Fig. 9 for Mappilary, the HSSN model misclassifies “Con-
struction” with “Flat” in both examples, while flat models
have an overall higher accuracy in the respective area.

In a scenario with occlusion, flat models are less likely
to misclassify compared to the HSSN model. This becomes
evident while inspecting the examples in Fig. 10 for the IDD
dataset. In the first example, we observe that the HSSN
model misclassifies the “Construction” class with “Vehi-
cle”, and in the second example, the “Nature” class with
“Construction”. By contrast, a flat classifier exhibits higher
accuracy in the occluded area.

When the evaluated models perform comparably in
terms of accuracy, we observe that flat models are better
calibrated. In the first example of Fig. 11 for ACDC, we
show that the HSSN model has low confidence in the “Con-
struction” label (side of a building) even though the pixel
accuracy is high in that area. In the second example, HSSN
misclassifies “Construction” with “Road”, but has higher
confidence than flat models in the area, even though the ac-
curacy is lower.

In more challenging scenarios, hyperbolic models ex-
hibit increased accuracy compared to Euclidean models. In
Fig. 12 for the BDD dataset, in both examples, the flat mod-
els show improved accuracy over the HSSN model and the
hyperbolic model outperforms the Euclidean model. In the
first example, in the area where the HSSN model misclas-
sifies “Nature” and “Sky”, we see an increase in accuracy
as we move from the leftmost example (HSSN) to the right-
most example (flat hyperbolic network). We can observe
a similar increase in the accuracy where the HSSN model
misclassifies “Construction” with “Vehicle” as we move
from left to right. The HSSN model has high confidence
in areas that it misclassified, indicating a higher degree is
miscalibration than the flat models.

By observing the pixels around the synthetic occlusion
on the first example in Fig. 13 (top left corner) for Wild-
dash, we observe superior accuracy of the hyperbolic model
compared to Euclidean and HSSN models. In terms of cal-
ibration, we observe that the Euclidean model has an over-
all higher confidence around the occluded area compared to
the hyperbolic model, even though the accuracy is lower in
this area. It illustrates our empirical findings that the hy-
perbolic model has smoother confidence maps. This is also
true for more challenging cases, such as the second exam-
ple in Fig. 13. HSSN and the Euclidean network have an
overall lower accuracy than the hyperbolic model. HSSN
also has high confidence, despite misclassifying the “Flat”
and “Vehicle” classes, while the Euclidean model has low
confidence in the correctly predicted areas. By contrast, the
hyperbolic model has low certainty in the areas with lower
pixel accuracy, suggesting good calibration of these models.
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Figure 8. Two qualitative examples from Cityscapes. See Appendix D for analysis.
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Figure 9. Two qualitative examples from Mappilary. See Appendix D for analysis.
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Figure 10. Two qualitative examples from IDD. See Appendix D for analysis.
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Figure 11. Two qualitative examples from ACDC. See Appendix D for analysis.
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Figure 12. Two qualitative examples from BDD. See Appendix D for analysis.
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Figure 13. Two qualitative examples from Wilddash. See Appendix D for analysis.
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