
Supplementary material (Appendix) for
NeRFiller: Completing Scenes via Generative 3D Inpainting

1. Summary of Supplementary Material
The following files are part of the supplementary material:
• This PDF, which describes details related to the main paper

and an additional user study for perceptual evaluation.
• A short video overviewing NeRFiller, which is available

on YouTube due to upload size limits:
https://youtu.be/AJNDRsS3sGs

• “multi-view consistent inpainting eval split” available at
https://youtu.be/dB5a5YNJETs. We show our
NeRF renders for a custom 10-second camera path, for all
10 scenes.

• “3D consistent image inpainting” available at https://
youtu.be/23xdEwi6YzY. - Results for the 8 NeRF
synthetic scenes. On the left, we show the inpaints. On the
right, we show the resulting NeRF. We are only showing
the 20 evaluation images, while 180 images were used to
train the NeRF.
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2. NeRF synthetic prompts
We use the following text prompts for each of the 8 NeRF
synthetic datasets from the original NeRF paper [6].
• “chair”: “a photo of a chair”
• “drums”: “a photo of drums”
• “ficus”: “a photo of a ficus plant”
• “hotdog”: “a photo of a hotdog”
• “lego”: “a photo of a lego bulldozer”
• “materials”: “a photo of materials”
• “mic”: “a photo of a microphone”
• “ship”: “a photo of a ship

3. Datasets

Some of our data can be found online with their respective
hyperlinks. Others were created by the authors by scanning
with Polycam, and one was obtained by modifying a SPIn-
NeRF dataset.

• “dumptruck” (Sketchfab)
• “turtle” (author capture with Polycam)
• “drawing” (Sketchfab)
• “backpack” (SPIn-NeRF dataset)
• “bear” (Sketchfab)
• “billiards” (Sketchfab)
• “norway” (Sketchfab)
• “cat” (author capture with Polycam)
• “boot” (Sketchfab)
• “office” (Sketchfab)

3.1. Marking inpaint regions

To mark inpaint regions, we have a variety of approaches
depending on the data. For the “office” scene, we mark
inpaint regions as any missing region from the original mesh,
found here on Sketchfab. For the other scenes, we place a 3D
occluder, such as a cube or cylinders. For the “cat” dataset
in Figure 1, we use a cylinder to mark an occlusion of the
body and a rectangular prism to mark the tag by the ear. It’s
quite straightforward to load the mesh into Blender and add
the occluders. The 3D masks can then be rendered from any
view. We leave the automatic placement of 3D occlusions
for future work. Uncertainty masks from Bayes’ Rays [2] or
deleted areas from Nerfbusters [12] could provide masks for
our method, but their masks are out-of-distribution for SD
(Stable Diffusion), shown in Fig. A1 and discussed in Sec. 6
of this document.

3.2. Creating NeRF datasets

To create NeRF datasets with the marked inpaint regions,
we render the mesh from ∼60 images (64 for all except
“backpack” which uses 60). For objects, we render around
the object and for e.g., large missing rectangles from a room,
we render arcs looking toward the region from different
angles, at different elevations. We can mark the inpainting
regions by doing a depth check between the actual mesh
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and the manually placed occluders. To create the “backpack”
scene, we took the dataset from SPIn-NeRF [8] and modified
the original tight mask around the backpack to include the
top part. We also dilated the masks to make them less tight.
See Figure 2 for an illustration of our changes to convert it
for our scene completion setting rather than object deletion.

4. Additional experiment details
4.1. Inpaint implementation details

Image classifier-free guidance. Some percentage of the
time during fine-tuning of the Stable Diffusion model for
inpainting [9], everything is masked out. This is similar to
dropping out the text prompt with some probability to enable
classifier-free guidance. Because of this training strategy, we
can enable image-guidance with a formulation similar to In-
structPix2Pix [1]. We modify the text-conditioned diffusion
inpainting model to predict its score estimate in the form:

ϵϕ(zt, t, c) = ϵϕ(zt, t, {cI , ∅})
+sI · (ϵϕ(zt, t, {cI , cT })− ϵϕ(zt, t, {cI , ∅})) (1)
+sT · (ϵϕ(zt, t, {cI , ∅})− ϵϕ(zt, t, {∅, ∅}))

with zt as the noisy latent at time t, cI and cT as conditioning
for image & mask, and text respectively. ∅ means no text
or completely masking out the image. sI and sT are image
and text guidance scales, respectively. We use sI > 0 and
sT = 0 to make the model conditioned only on the image and
masked region to inpaint. We note that the popular diffusers1

library doesn’t enable setting sI > 0 out-of-the-box, so most
works use diffusion inpainting models by using text prompts
to describe an inpaint. Trying to describe the scene, however,
can be difficult and using image only guidance (“SD Image
Cond”, where sI > 0 and sT = 0) tends to be more multi-
view consistent (Figure 7).

Scheduler details. We use DDIM for our scheduler. We use
20 steps whenever sampling SD [9], regardless of how much
noise is added to a current render. This is similar to Instruct
NeRF2NeRF [3]’s dataset update procedure. The model
we use can be found here as “stabilityai/stable-diffusion-2-
inpainting” on Hugging Face.

4.2. NeRF implementation details

For synthetic scenes and objects, we adopt recommended
practices for training Nerfacto [11] which is to set the back-
ground color to either white or black, disable scene contrac-
tion, and turn off the distortion loss. For the “backpack”
forward facing scene from SPIn-NeRF [8], we only turn
off the distortion loss. Nerfacto is not tuned for LLFF [5]
forward-facing scenes, so there may be some artifacts in this

1https://github.com/huggingface/diffusers

dataset compared to our datasets which have larger parallax.
For other scenes e.g., those that resemble an indoor room,
we train Nerfacto with default settings.

For the baselines besides “Masked NeRF” in Sec. 5.2
“Completing large unknown 3D regions” and Table 2, we
train a modified Nerfacto that has losses on patches. Note
that “Masked NeRF” is simply Nerfacto, with any modifica-
tions as described. The other baselines render 1024 patches
of size 32×32 per iteration. An L1 RGB loss and LPIPS [13]
loss are applied to these patches, similar to IN2N [3]. Fur-
thermore, we start the dataset update (DU) methods from the
result of “Masked NeRF”. Each method is trained for 30K
iterations, which is typical for Nerfacto.

4.3. Evaluation against inpainted images

We use t ∈ [0.4, 1.0] noise added to a render before sam-
pling SD and updating a training image. Because t = 0.4
is the minimum noise, the inpainter has some freedom to
change the inpaint from the current NeRF render. If we
added no noise (t = 0.0) to the current NeRF render, then
the DU (dataset update) methods would be perfect on the
NeRF metrics (PSNR, LPIPS, SSIM) because SD would
do nothing and the inpainted images would be exactly the
NeRF rendered images. Nevertheless, quantifying inpaints
without a ground truth result is challenging and our metrics
represent an effort to show quantitative evaluation of 3D con-
sistency. We recommend looking at the videos to compare
the methods qualitatively.

4.4. Near plane for evaluation metrics

We render with a near plane slightly in front of the train-
ing images when reporting our metrics. This is important
because NeRFs can cheat by placing “floaters” in front of
the training images to explain away any discrepancies in the
actual 3D scene compared to the training images. By setting
the near plane a bit beyond the camera origin, we can render
the true 3D scene without the floaters directly in front of
training images.

4.5. Novel-view video metrics

For the MUSIQ image quality metric, also used in [7], we
take all 300 frames (10 seconds, 30 FPS) of the novel-
view videos, downsample each frame by 4x to capture low-
frequency structure, and run the MUSIQ [4] model (trained
on the AVA dataset) to obtain an image quality score. For the
Corrs metric, we use LoFTR [10] with a confidence thresh-
old of 0.8. We count the number of correspondences above
this confidence threshold for 100 random pairs of frames.

4.6. Metrics for each scene

We provide the individual tables for Table 1 and Table 2 of
the paper. See the end of the document for these.

https://huggingface.co/stabilityai/stable-diffusion-2-inpainting
https://github.com/huggingface/diffusers


4.7. Reference-based inpainting

For these experiments, we edit 30 images at a time (instead
of 40) and make 10 grids, each with exactly 1 reference
inpaint.

4.8. Speed

We report times on a NVIDIA RTX A5000. Inpainting
one 512×512 image takes 1.5 sec/img, with M=50 steps of
DDIM sampling. Grid Prior and Joint Multi-View Inpainting
take 0.375 sec/img because 2×2 grids are used. Monodepth
prediction takes 0.25 sec/img. Nerfacto (and Masked NeRF)
train for 30K iterations, for a total time of 12.5 minutes. For
the other methods, we start from a pre-trained Nerfacto and
train for an additional 30K iters. LaMask & SD Image Cond
take 1 hour to train. Inpaint DU takes 1.5 hours. Ours w/o
depth takes 70 min and Ours with depth takes 75 min. For
Inpaint DU and Ours, we update 40 images every 1K iters.
Ours is faster than Inpaint DU because we inpaint with 2×2
grids.

5. Perceptual evaluation user study
We include supplementary videos for qualitative assessment,
but a perceptual evaluation can sometimes be useful. We
conduct a user study on MTurk to complement Sec. 5.2 and
Table 2 of the paper. For each dataset and baseline, we
asked forced-choice A/B questions. We consider the three
most competitive baselines. We ask each dataset×baseline
question 40 times for a total of 2400 samples. We report
averages over each dataset and report results in the table. We
use a consistency check to ensure high-quality responses. In
all cases, our method is preferred over the baselines:

Baseline Preference for “Ours”
LaMask 87%
SD Image Cond 88%
Inpaint + DU 59%

Table R1. User study to select preferred videos. The supp. file “3D consistent
image inpainting.mp4” contains the videos shown to users. We show the pink
mask video and two options, the baseline and our video, and ask which video
completes the missing region better.

We use the following repo for these experiments:
https://github.com/ethanweber/pollo.

6. Inpainting NeRF casual captures
As mentioned in our limitations section (Sec. 6), Stable
Diffusion (SD) fails to produce good inpaints when the mask
distribution is similar to those produced by Bayes’ Rays [2]
or Nerfbusters [12]. In Fig. A1, we illustrate this. Please see
the caption for details.

https://github.com/ethanweber/pollo


PSNR ↑ SSIM ↑ LPIPS ↓

Masked NeRF 5.91 0.70 0.40
LaMask 21.13 0.93 0.23
SD Text Cond 13.27 0.70 0.40
SD Image Cond 13.71 0.75 0.31
Extended Attention 15.20 0.78 0.30
Grid Prior 14.90 0.82 0.27
Joint Multi-View Inpainting 16.59 0.85 0.24

Table A1. 2D inpainting consistency for data “chair”.

PSNR ↑ SSIM ↑ LPIPS ↓

Masked NeRF 5.77 0.66 0.49
LaMask 16.79 0.89 0.39
SD Text Cond 11.17 0.72 0.29
SD Image Cond 12.30 0.76 0.27
Extended Attention 13.23 0.76 0.26
Grid Prior 12.64 0.78 0.27
Joint Multi-View Inpainting 13.25 0.79 0.27

Table A2. 2D inpainting consistency for data “drums”.

PSNR ↑ SSIM ↑ LPIPS ↓

Masked NeRF 6.86 0.73 0.37
LaMask 18.50 0.91 0.22
SD Text Cond 13.16 0.74 0.31
SD Image Cond 13.40 0.76 0.31
Extended Attention 14.86 0.77 0.23
Grid Prior 14.35 0.81 0.28
Joint Multi-View Inpainting 17.24 0.85 0.21

Table A3. 2D inpainting consistency for data “ficus”.

PSNR ↑ SSIM ↑ LPIPS ↓

Masked NeRF 8.84 0.73 0.36
LaMask 21.29 0.92 0.15
SD Text Cond 12.93 0.75 0.35
SD Image Cond 15.12 0.78 0.31
Extended Attention 15.06 0.78 0.30
Grid Prior 15.62 0.84 0.24
Joint Multi-View Inpainting 16.69 0.86 0.24

Table A4. 2D inpainting consistency for data “hotdog”.

PSNR ↑ SSIM ↑ LPIPS ↓

Masked NeRF 8.80 0.73 0.33
LaMask 17.84 0.84 0.18
SD Text Cond 13.01 0.75 0.27
SD Image Cond 14.79 0.79 0.22
Extended Attention 15.42 0.79 0.22
Grid Prior 14.84 0.81 0.21
Joint Multi-View Inpainting 17.89 0.84 0.18

Table A5. 2D inpainting consistency for data “lego”.

PSNR ↑ SSIM ↑ LPIPS ↓

Masked NeRF 8.28 0.72 0.33
LaMask 18.23 0.88 0.16
SD Text Cond 12.80 0.74 0.29
SD Image Cond 14.53 0.78 0.25
Extended Attention 12.85 0.77 0.29
Grid Prior 14.25 0.80 0.22
Joint Multi-View Inpainting 14.53 0.80 0.23

Table A6. 2D inpainting consistency for data “materials”.

PSNR ↑ SSIM ↑ LPIPS ↓

Masked NeRF 6.94 0.73 0.35
LaMask 21.11 0.92 0.13
SD Text Cond 10.97 0.72 0.31
SD Image Cond 13.40 0.77 0.28
Extended Attention 14.26 0.78 0.27
Grid Prior 12.41 0.80 0.26
Joint Multi-View Inpainting 13.26 0.81 0.27

Table A7. 2D inpainting consistency for data “mic”.

PSNR ↑ SSIM ↑ LPIPS ↓

Masked NeRF 10.66 0.69 0.35
LaMask 21.76 0.82 0.18
SD Text Cond 13.14 0.72 0.31
SD Image Cond 15.95 0.74 0.29
Extended Attention 15.69 0.74 0.29
Grid Prior 16.41 0.78 0.27
Joint Multi-View Inpainting 17.64 0.80 0.24

Table A8. 2D inpainting consistency for data “ship”.



PSNR ↑ SSIM ↑ LPIPS ↓ MUSIQ ↑ Corrs ↑

Masked NeRF 12.45 0.81 0.30 3.82 330
LaMask 27.43 0.95 0.03 3.72 179
SD Image Cond 17.42 0.88 0.15 3.55 305
Inpaint + DU 25.42 0.95 0.06 3.96 260
Ours w/o depth 29.80 0.96 0.03 3.91 218
Ours 29.71 0.96 0.03 3.92 213

Table A9. Quantitative NeRF baselines for data “cat”.

PSNR ↑ SSIM ↑ LPIPS ↓ MUSIQ ↑ Corrs ↑

Masked NeRF 19.16 0.90 0.15 3.65 164
LaMask 31.66 0.96 0.03 3.66 140
SD Image Cond 21.96 0.89 0.12 3.62 182
Inpaint + DU 28.40 0.94 0.07 3.78 151
Ours w/o depth 29.76 0.94 0.06 3.65 154
Ours 29.74 0.93 0.07 3.69 146

Table A10. Quantitative NeRF baselines for data “turtle”.

PSNR ↑ SSIM ↑ LPIPS ↓ MUSIQ ↑ Corrs ↑

Masked NeRF 14.20 0.70 0.34 3.95 1083
LaMask 25.45 0.76 0.09 4.03 1040
SD Image Cond 24.23 0.77 0.12 4.00 1024
Inpaint + DU 25.15 0.76 0.13 3.97 1041
Ours w/o depth 26.68 0.82 0.12 4.01 1019
Ours 26.49 0.81 0.13 4.02 1038

Table A11. Quantitative NeRF baselines for data “drawing”.

PSNR ↑ SSIM ↑ LPIPS ↓ MUSIQ ↑ Corrs ↑

Masked NeRF 11.68 0.79 0.25 3.81 214
LaMask 24.50 0.95 0.05 4.02 195
SD Image Cond 16.45 0.89 0.12 3.66 196
Inpaint + DU 20.42 0.90 0.10 3.80 228
Ours w/o depth 28.76 0.96 0.03 3.84 211
Ours 29.37 0.96 0.03 3.86 176

Table A12. Quantitative NeRF baselines for data “boot”.

PSNR ↑ SSIM ↑ LPIPS ↓ MUSIQ ↑ Corrs ↑

Masked NeRF 16.86 0.93 0.10 3.82 245
LaMask 27.41 0.96 0.02 3.71 200
SD Image Cond 24.58 0.95 0.04 3.70 261
Inpaint + DU 27.92 0.95 0.03 3.70 245
Ours w/o depth 28.20 0.96 0.03 3.72 259
Ours 28.13 0.96 0.03 3.72 264

Table A13. Quantitative NeRF baselines for data “bear”.

PSNR ↑ SSIM ↑ LPIPS ↓ MUSIQ ↑ Corrs ↑

Masked NeRF 11.96 0.75 0.29 3.80 193
LaMask 27.73 0.97 0.04 3.84 148
SD Image Cond 19.07 0.87 0.15 3.54 235
Inpaint + DU 28.76 0.95 0.05 3.69 210
Ours w/o depth 27.75 0.95 0.04 3.63 245
Ours 27.48 0.95 0.05 3.62 232

Table A14. Quantitative NeRF baselines for data “dumptruck”.

PSNR ↑ SSIM ↑ LPIPS ↓ MUSIQ ↑ Corrs ↑

Masked NeRF 16.23 0.70 0.32 3.65 934
LaMask 27.25 0.86 0.09 3.84 865
SD Image Cond 21.58 0.81 0.14 3.98 852
Inpaint + DU 27.75 0.87 0.10 3.83 812
Ours w/o depth 29.54 0.90 0.07 3.65 980
Ours 29.11 0.88 0.07 3.69 1059

Table A15. Quantitative NeRF baselines for data “norway”.

PSNR ↑ SSIM ↑ LPIPS ↓ MUSIQ ↑ Corrs ↑

Masked NeRF 16.41 0.80 0.19 3.46 1766
LaMask 24.82 0.84 0.04 3.41 1833
SD Image Cond 22.48 0.83 0.07 3.45 1769
Inpaint + DU 24.04 0.84 0.06 3.47 1805
Ours w/o depth 24.38 0.85 0.04 3.39 1847
Ours 23.93 0.83 0.05 3.40 1924

Table A16. Quantitative NeRF baselines for data “backpack”.

PSNR ↑ SSIM ↑ LPIPS ↓ MUSIQ ↑ Corrs ↑

Masked NeRF 13.37 0.69 0.37 3.50 981
LaMask 25.63 0.84 0.11 3.59 1053
SD Image Cond 24.31 0.83 0.12 3.66 1023
Inpaint + DU 27.13 0.83 0.13 3.69 1078
Ours w/o depth 28.87 0.88 0.09 3.66 1120
Ours 28.78 0.88 0.09 3.66 1137

Table A17. Quantitative NeRF baselines for data “billiards”.

PSNR ↑ SSIM ↑ LPIPS ↓ MUSIQ ↑ Corrs ↑

Masked NeRF 14.74 0.75 0.31 3.65 839
LaMask 32.02 0.93 0.03 3.80 779
SD Image Cond 28.26 0.90 0.07 3.64 799
Inpaint + DU 31.05 0.92 0.05 3.70 766
Ours w/o depth 30.35 0.93 0.05 3.68 764
Ours 30.08 0.93 0.05 3.69 768

Table A18. Quantitative NeRF baselines for data “office”.
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Figure A1. Out-of-distribution inpaints from Stable Diffusion when applied to casual captures. On the left, we show a training image
from a casually captured scene. On the right, we show masks obtained by rendering a novel-view that has occlusions, and then running
Bayes’ Rays [2] to delete areas with high uncertainty (marked in pink). We then inpaint these regions with image conditioning. When
the mask is not dilated (top rows), the inpaints have many artifacts such as ripple patterns and gray stretches. When the masks are dilated
(bottom rows), the inpaints get slightly better but are no longer consistent with the known parts of the scene. This is a challenging setting to
address in future work. Retraining SD with masks of this distribution could alleviate the problem, but this is costly and out-of-scope of using
an off-the-shelf model, as done in our work.
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