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A. Quantitative Evaluations and User Studies for 3D Generation

We quantitatively compare our ASD with DreamFusion [9] (SDS) and ProlificDreamer [11] (VSD) using CLIP score, fol-
lowing previous works [7, 9]. We evaluate the similarities between text prompts and randomly rendered views of the 3D
NeRFs using three variants of CLIP [10] (i.e., CLIP B/32, CLIP B/16, and CLIP B/14). The CLIP score may not honestly
reflect the quality of 3D results. For example, the CLIP score of Figure 1(a) is higher than Figure 1(b) even though its quality
is significantly worse, which does not align with human perceptual judgments. Several existing methods [2, 11] choose to
only conduct user studies for performance evaluation.

Method CLIP B/32↑ CLIP B/16↑ CLIP L/14↑
DreamFusion (SDS) 0.3282 0.3290 0.2889

ProlificDreamer (VSD) 0.3203 0.3258 0.2789
Ours (ASD) 0.3314 0.3376 0.2854

Table 1. CLIP Score by computing the similarity between multiple randomly rendered views of the 3D model and the given text prompt.

(a) CLIP score: 0.3401 (b) CLIP score: 0.3069

Figure 1. Illustration of CLIP scores that conflict with human per-
ceptual judgments. We use CLIP B/16 to compute scores here. Figure 2. User evaluation between VSD and ASD.

Therefore, we also present user studies in Figure 2. We compare 3D NeRFs generated by VSD and ASD with different
prompts in terms of details, semantic alignment, and overall quality. Figure 2 demonstrates that ASD leads to better details,
which is consistent with our observation that VSD’s results are slightly more saturated and therefore have worse details. The
semantic alignment scores of VSD and ASD are similar. In general, more users prefer the results generated by ASD.

B. Derivation of Adversarial Score Distillation Loss and Gradients

We define a discriminator in the form as
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where xg
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where ω(t) is a weight based on the time t.
Then we have the discriminator loss as
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where xr
t = αtx

r
0 + σtϵ is the noisy real sample based on the real sample xr
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which can be implemented using an textual-inversion embedding [3] or LoRA [6]. Thus, LD is a loss function only about
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where we use − log p(x0) ≈ Et,ϵ[∥ϵxt,ϕ,t − ϵ∥22], according to [5, 8]. x̃ comes from a mixture distribution µ̃, so we can
sampling both real or fake data points [12] which means x̃t can be replaced by a combination of xr

t and xg
t . η and γ are

adjustable hyperparameters, to keep the penalty term positive, they are subject to γ ≥ −η∥ϵxr
t ;y,t

− ϵxr
t ;ϕ,t

∥22/∥ϵxg
t ;y,t

−
ϵxg

t ;ϕ,t
∥22. However, in Eq. (5), the noisy real sample xr

t is unavailable for text-conditioned cases. For these cases, we can use
the upper bound of LD, (i.e. L′

D), which does not contain xr
t terms. When η = 1/2, based on triangle and Cauchy–Schwarz

inequality, we have:

∇ϕL′
D = ∇ϕEt,ϵ[∥ϵxg

t ,ϕ,t
− ϵ∥22 + γ∥ϵxg

t ,y,t
− ϵxg

t ,ϕ,t
∥22]

= ∇ϕEt,ϵ[∥ϵxg
t ,ϕ,t

− ϵ∥22 − ∥ϵxr
t ,ϕ,t

− ϵ∥22 + (∥ϵxr
t ,ϕ,t

− ϵ∥22 + ∥ϵxr
t ,y,t

− ϵ∥22) + γ∥ϵxg
t ,y,t

− ϵxg
t ,ϕ,t

∥22]

= ∇ϕEt,ϵ[∥ϵxg
t ,ϕ,t

− ϵ∥22 − ∥ϵxr
t ,ϕ,t

− ϵ∥22 +
1

2
(12 + 12)(∥ϵxr

t ,ϕ,t
− ϵ∥22 + ∥ϵxr

t ,y,t
− ϵ∥22) + γ∥ϵxg

t ,y,t
− ϵxg

t ,ϕ,t
∥22]

≥ ∇ϕEt,ϵ[∥ϵxg
t ,ϕ,t

− ϵ∥22 − ∥ϵxr
t ,ϕ,t

− ϵ∥22 +
1

2
(∥ϵxr

t ,ϕ,t
− ϵ∥2 + ∥ϵxr

t ,y,t
− ϵ∥2)2 + γ∥ϵxg

t ,y,t
− ϵxg

t ,ϕ,t
∥22]

≥ ∇ϕEt,ϵ[∥ϵxg
t ,ϕ,t

− ϵ∥22 − ∥ϵxr
t ,ϕ,t

− ϵ∥22 +
1

2
(∥ϵxr

t ,ϕ,t
− ϵ+ ϵ− ϵxr

t ,y,t
∥2)2 + γ∥ϵxg

t ,y,t
− ϵxg

t ,ϕ,t
∥22]

= ∇ϕEt,ϵ[∥ϵxg
t ,ϕ,t

− ϵ∥22 − ∥ϵxr
t ,ϕ,t

− ϵ∥22 +
1

2
∥ϵxr

t ,y,t
− ϵxr

t ,ϕ,t
∥22 + γ∥ϵxg

t ,y,t
− ϵxg

t ,ϕ,t
∥22] = ∇ϕLD (6)

In practice, we find η = 1/2, γ ∈ [−1, 0) works for most cases.

C. Explanation of the workflow
To get a clearer picture of the optimization workflow, we further provide an algorithm description in Algorithm 1.



Algorithm 1 Adversarial Score Distillation for 3D tasks
Input: Prompt y, optimizable textual-inversion embedding or LoRA ϕ, and pretrained diffusion model.

1: repeat
2: Sample a camera pose c.
3: Differentiable render the 3D structure θ at pose c to get a 2D image x0 = g(θ, c).
4: Random select a timestep t and add random noise ϵ to get xg

t = αtx0 + σtϵ.
5: Predict noise ϵxg

t ;ϕ,t
, ϵxg

t ;y,t
and ϵxg

t ;t
using the pretrained diffusion model.
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8: until converged
Output: 3D structure θ.

D. Multi-view visualization
We exhibit some examples in Figure 3. The code and project page will be released which will contain rotating videos of the
generated 3D models.

E. Additional Experimental Results
More examples in both 2D distillation and text-to-3D tasks are shown in Figure 4. In the text-to-3D task, we only generate
3D NeRFs from scratch for simplicity, which is the first stage of VSD.
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Figure 3. Multi-view visualizations of generated 3D results.



a castle in the middle of
a marsh

a boy portrait with
sunglasses

a cozy living room with a
painting of a corgi [...]

a group of elephants walking
in muddy wate

a photograph of a hamster
a red fire hydrant spraying

water
a small kitchen with a low

ceiling
cliffs at day time

a tarantula, highly detailed a delicious croissant a dachsund dressed up [...] [...] chocolate chip cookies

a baby bunny sitting on [...] a blue jay standing on [...] [...] a goose made out of gold a plush dragon toy

Figure 4. More examples generated by ASD in both 2D and 3D.
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