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1. Experimental Details
In this section, we supplement the experimental details of
each baseline method and our method. To improve the qual-
ity and remove the watermarks of generated videos, we fur-
ther fine-tune ModelScopeT2V [17] for 30k iterations on
a randomly selected subset from our internal data, which
contains about 30,000 text-video pairs. For a fair compar-
ison, we use the fine-tuned ModelScopeT2V model as the
base video diffusion model for all methods except for Ani-
mateDiff [5] and Tune-A-Video [18], both of which use the
image diffusion model (Stable Diffusion [14]) in their of-
ficial papers. Here, we use Stable Diffusion v1-51 as their
base image diffusion model. During training, unless other-
wise specified, we default to using AdamW [11] optimizer
with the default betas set to 0.9 and 0.999. The epsilon is
set to the default 1.0× 10−8, and the weight decay is set to
0. During inference, we use 50 steps of DDIM [16] sam-
pler and classifier-free guidance [6] with a scale of 9.0 for
all baselines. We generate 32-frame videos with 256 × 256
spatial resolution and 8 fps. All experiments are conducted
using one NVIDIA A100 GPU. In the following, we intro-
duce the implementation details of baselines from subject
customization, motion customization, and arbitrary combi-
nations of subjects and motions (referred to as video cus-
tomization).

1.1. Subject Customization

For all methods, we set batch size as 4 to learn a subject.
DreamVideo (ours). In subject learning, we take ∼3000
iterations for optimizing the textual identity following [4,
10] with learning rate 1.0 × 10−4, and ∼800 iterations for

*Corresponding author.
1https://huggingface.co/runwayml/stable-diffusion-v1-5

learning identity adapter with learning rate 1.0× 10−5. We
set the hidden dimension of the identity adapter to be half
the input dimension. Our method takes ∼12 minutes to train
the identity adapter on one A100 GPU.
Textual Inversion [4]. According to their official code2, we
reproduce Textual Inversion to the video diffusion model.
We optimize the text embedding of pseudo-word “S∗” with
prompt “a S∗” for 3000 iterations, and set the learning rate
to 1.0 × 10−4. We also initialize the learnable token with
the corresponding class token. These settings are the same
as the first step of our subject-learning strategy.
Dreamix [12]. Since Dreamix is not open source, we re-
produce its method based on the code3 of ModelScopeT2V.
According to the descriptions in the official paper, we only
train the spatial parameters of the UNet while freezing the
temporal parameters. Moreover, we refer to the third-party
implementation4 of DreamBooth [15] to bind a unique iden-
tifier with the specific subject. The text prompt used for
target images is “a [V] [category]”, where we initialize [V]
with “sks”, and [category] is a coarse class descriptor of the
subject. The learning rate is set to 1.0×10−5, and the train-
ing iterations are 100 ∼ 200.
Custom Diffusion [9]. We refer to the official code5 of
Custom Diffusion and reproduce it on the video diffusion
model. We train Custom Diffusion with the learning rate
of 4.0 × 10−5 and 250 iterations, as suggested in their pa-
per. We also detach the start token embedding ahead of the
class word with the text prompt “a S∗ [category]”. We si-
multaneously optimize the parameters of the key as well as
value matrices in cross-attention layers and text embedding

2https://github.com/rinongal/textual inversion
3https://modelscope.cn/models/damo/text-to-video-synthesis
4https://github.com/XavierXiao/Dreambooth-Stable-Diffusion
5https://github.com/adobe-research/custom-diffusion
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A.D. M.S. LoRA Ours
Dynamic Degree [%] 34.3 50.0 60.2 68.9

Table S1. Dynamic Degree on video customization. A.D. and
M.S. are AnimateDiff and ModelScopeT2V.

of S∗. We initialize the token S∗ with the token-id 42170
according to the paper.

1.2. Motion Customization

To model a motion, we set batch size to 2 for training from
multiple videos while batch size to 1 for training from a
single video.
DreamVideo (ours). In motion learning, we train motion
adapter for ∼1000 iterations with learning rate 1.0× 10−5.
Similar to the identity adapter, the hidden dimension of the
motion adapter is set to be half the input dimension. On
one A100 GPU, our method takes ∼15 and ∼30 minutes
to learn a motion pattern from a single video and multiple
videos, respectively.
ModelScopeT2V [17]. We only fine-tune the temporal pa-
rameters of the UNet while freezing the spatial parameters.
We set the learning rate to 1.0 × 10−5, and also train 1000
iterations to learn a motion.
Tune-A-Video [18]. We use the official implementation6 of
Tune-A-Video for experiments. The learning rate is 3.0 ×
10−5, and training iterations are 500. Here, we adapt Tune-
A-Video to train on both multiple videos and a single video.
Text2LIVE [1]. We use the official code7 of Text2LIVE
for experiments. We follow their default settings to set the
learning rate to 0.0025 and the number of training epochs
to 3000. Since Text2LIVE cannot edit the foreground and
background simultaneously, we train it twice in some cases.

1.3. Video Customization

DreamVideo (ours). We combine the trained identity
adapter and motion adapter for video customization during
inference. No additional training is required. We also ran-
domly select an image provided during training as the ap-
pearance guidance. We find that choosing different images
has a marginal impact on generated videos.
AnimateDiff [5]. We use the official implementation8 of
AnimateDiff for experiments. AnimateDiff trains the mo-
tion module from scratch, but we find that this training strat-
egy may cause the generated videos to be unstable and tem-
poral inconsistent. For a fair comparison, we further fine-
tune the pre-trained weights of the motion module provided
by AnimateDiff and carefully adjust the hyperparameters.
The learning rate is set to 1.0×10−5, and training iterations

6https://github.com/showlab/Tune-A-Video
7https://github.com/omerbt/Text2LIVE
8https://github.com/guoyww/AnimateDiff

are 50. For the personalized image diffusion model, we
use the third-party implementation4 code to train a Dream-
Booth model. During inference, we combine the Dream-
Booth model and motion module to generate videos.
ModelScopeT2V [17]. We train spatial/temporal parame-
ters of the UNet while freezing other parameters to learn a
subject/motion. Settings of training subject and motion are
the same as Dreamix in Sec. 1.1 and ModelScopeT2V in
Sec. 1.2, respectively. During inference, we combine spa-
tial and temporal parameters into a UNet to generate videos.
LoRA [7]. In addition to fully fine-tuning, we also attempt
the combinations of LoRAs. According to the conclusions
in Sec. 3.3 of our main paper and the method of Custom
Diffusion [9], we only add LoRA to the key and value ma-
trices in cross-attention layers to learn a subject. For motion
learning, we add LoRA to the key and value matrices in all
attention layers. The LoRA rank is set to 32. Other set-
tings are consistent with DreamVideo. During inference,
we merge spatial and temporal LoRAs into corresponding
layers.

2. More Results

In this section, we conduct further experiments and show-
case more results to illustrate the superiority of our
DreamVideo.

2.1. Video Customization

We provide more results compared with the baselines, as
shown in Fig. S1. The videos generated by AnimateDiff
suffer from little motion, while other methods still strug-
gle with the fusion conflict problem of subject identity and
motion. In contrast, our method can generate videos that
preserve both subject identity and motion pattern.

We also use an additional quantitative metric, Dynamic
Degree [8], to evaluate motion intensity. Since Temporal
Consistency cannot comprehensively evaluate the generated
motions (1 for static videos), it is important to also evalu-
ate the degree of dynamics (i.e., whether it contains large
motions) generated by the model. Tab. S1 shows that high
Temporal Consistency often results in a lower Dynamic De-
gree, and our DreamVideo achieves a higher Dynamic De-
gree score, which exceeds AnimateDiff about 34.6%.

2.2. Subject Customization

In addition to the baselines in the main paper, we also com-
pare our DreamVideo with another state-of-the-art method,
Custom Diffusion [9]. Both the qualitative comparison in
Fig. S2 and the quantitative comparison in Tab. S2 illus-
trate that our method outperforms Custom Diffusion and
can generate videos that accurately retain subject identity
and conform to diverse contextual descriptions with fewer
parameters.



Method CLIP-T CLIP-I DINO-I T. Cons. Para.
Custom Diffusion [9] 0.284 0.699 0.471 0.962 24M
DreamVideo (ours) 0.295 0.701 0.475 0.964 11M

Table S2. Quantitative comparison of subject customization between our method and Custom Diffusion [9]. “T. Cons.” and “Para.”
denote Temporal Consistency and parameter number, respectively.

Method Text
Alignment

Subject
Fidelity

Temporal
Consistency

ours vs. Textual Inversion [4] 58.4 / 41.6 79.8 / 20.2 69.7 / 30.3
ours vs. Dreamix [12] 63.7 / 36.3 56.0 / 44.0 50.8 / 49.2

ours vs. Custom Diffusion [9] 70.4 / 29.6 69.1 / 30.9 63.0 / 37.0

Table S3. Human evaluations on customizing subjects between our method and alternatives.

Method Text
Alignment

Motion
Fidelity

Temporal
Consistency

ours vs. ModelScopeT2V [17] 64.1 / 35.9 52.6 / 47.4 62.8 / 37.2
ours vs. Tune-A-Video [18] 73.8 / 26.2 52.4 / 47.6 74.1 / 25.9

Table S4. Human evaluations on customizing motions between our method and alternatives.

As shown in Fig. S3, we provide the customization re-
sults for more subjects, further demonstrating the favorable
generalization of our method.

2.3. Motion Customization

To further evaluate the motion customization capabilities
of our method, we show more qualitative comparison re-
sults with baselines on multiple training videos and a single
training video, as shown in Fig. S4. Our method exhibits
superior performance than baselines and ignores the appear-
ance information from training videos when modeling mo-
tion patterns.

We showcase more results of motion customization in
Fig. S5, providing further evidence of the robustness of our
method.

2.4. User Study

For subject customization, we generate 120 videos from
15 subjects, where each subject includes 8 text prompts.
We present three sets of questions to participants with 3∼5
reference images of each subject to evaluate Text Align-
ment, Subject Fidelity, and Temporal Consistency. Given
the generated videos of two anonymous methods, we ask
each participant the following questions: (1) Text Align-
ment: “Which video better matches the text description?”;
(2) Subject Fidelity: “Which video’s subject is more similar
to the target subject?”; (3) Temporal Consistency: “Which
video is smoother and has less flicker?”. For motion cus-
tomization, we generate 120 videos from 20 motion pat-
terns with 6 text prompts. We evaluate each pair of com-
pared methods through Text Alignment, Motion Fidelity,

and Temporal Consistency. The questions of Text Align-
ment and Temporal Consistency are similar to those in sub-
ject customization above, and the question of Motion Fi-
delity is like: “Which video’s motion is more similar to the
motion of target videos?” The human evaluation results are
shown in Tab. S3 and Tab. S4. Our DreamVideo consis-
tently outperforms other methods on all metrics.

3. More Ablation Studies
3.1. More Qualitative Results

We provide more qualitative results in Fig. S6 to further ver-
ify the effects of each component in our method. The con-
clusions are consistent with the descriptions in the main pa-
per. Remarkably, we observe that without appearance guid-
ance, the generated videos may learn some noise, artifacts,
background, and other subject-unrelated information from
training videos.

3.2. Effects of Parameters in Adapter and LoRA

To measure the impact of the number of parameters on per-
formance, we reduce the hidden dimension of the adapter to
make it have a comparable number of parameters as LoRA.
For a fair comparison, we set the hidden dimension of the
adapter to 32 without using textual identity and appearance
guidance. We adopt the DreamBooth [15] paradigm for
subject learning, which is the same as LoRA. Other settings
are the same as our DreamVideo.

As shown in Fig. S7, we observe that LoRA fails to gen-
erate videos that preserve both subject identity and motion.
The reason may be that LoRA modifies the original param-



Method CLIP-T CLIP-I DINO-I T. Cons. Para.
LoRA 0.286 0.644 0.409 0.964 6M

Adapter 0.298 0.648 0.412 0.967 3M

Table S5. Quantitative comparison of video customization between Adapter and LoRA. “T. Cons.” denotes Temporal Consistency.
“Para.” means parameter number.

Self-Attn FFN CLIP-T T. Cons.
Serial Serial 0.303 0.969
Serial Parallel 0.306 0.971
Parallel Serial 0.308 0.975
Parallel Parallel 0.309 0.975

Table S6. Quantitative comparison of adapter type on motion
customization. “Serial” and “Parallel” mean using serial and par-
allel adapters in the corresponding layer, respectively.

Method CLIP-T T. Cons. Human
ModelScopeT2V [17] 0.290 0.950 22.4%

Tune-A-Video [18] 0.287 0.943 13.2%
Text2LIVE [1] 0.275 0.952 4.3%

DreamVideo (ours) 0.318 0.964 60.1%

Table S7. Extra quantitative comparison on motion customiza-
tion from DAVIS dataset. Human denotes human evaluation.

eters of the model during inference, causing conflicts and
sacrificing performance when merging spatial and temporal
LoRAs. In contrast, the adapter can alleviate fusion con-
flicts and achieve a more harmonious combination.

The quantitative comparison results in Tab. S5 also il-
lustrate the superiority of the adapter compared to LoRA in
video customization tasks.

3.3. Effects of Adapter Type

To evaluate which adapter is more suitable for customiza-
tion tasks, we design four combinations of adapters and
parameter layers for motion customization, as shown in
Tab. S6. We consider the serial adapter and parallel adapter
along with self-attention layers and feed-forward layers.
The results demonstrate that using parallel adapters on all
layers achieves better performance. Therefore, we uni-
formly employ parallel adapters in our approach.

4. Extra Results of Motion Customization

We conduct extra motion customization experiments on the
DAVIS dataset [13] to further verify the effectiveness of our
method. We also design 116 text prompts used for experi-
mental validation.

Method CLIP-T T. Cons.
w/o appearance guidance 0.292 0.956

DreamVideo (ours) 0.318 0.964

Table S8. Extra ablation study of appearance guidance on mo-
tion customization from DAVIS dataset.

Architecture CLIP-T T. Cons.
a linear layer 0.315 0.952

a linear layer with nonlinearity 0.308 0.949
bottleneck w/o nonlinearity 0.313 0.960

DreamVideo (ours) 0.318 0.964

Table S9. Extra ablation study of adapter architecture on mo-
tion customization from DAVIS dataset.

4.1. Comparison with More Baselines

Besides ModelScopeT2V [17] and Tune-A-Video [18], we
also compare our method with Text2LIVE [1], as shown in
Fig. S8 and Tab. S7. Qualitative and quantitative results
demonstrate that our DreamVideo consistently outperforms
baselines. For human evaluation in Tab. S7, we ask 5 people
to rate the overall quality of 205 videos by four methods,
and our method is most preferred by users.

4.2. Extra Ablation Studies

Effects of appearance guidance. Fig. S9 and Tab. S8 fur-
ther verify the effects of appearance guidance on motion
customization. When appearance guidance is removed, we
observe that the appearance of subjects in the generated
videos is corrupted.
Extra multiple seeds results. We provide multi-seed re-
sults in Fig. S9 to reduce randomness and verify the consis-
tency of model performance.
Effects of adapter architecture. Tab. S9 shows the effects
of different adapter architectures on motion customization.
We find that our designed bottleneck adapter with nonlin-
earity achieves better performance.

5. Social Impact and Discussions

Social impact. While training large-scale video diffusion
models is extremely expensive and unaffordable for most
individuals, video customization by fine-tuning only a few
images or videos provides users with the possibility to use



video diffusion models flexibly. Our approach allows users
to generate customized videos by arbitrarily combining sub-
ject and motion while also supporting individual subject
customization or motion customization, all with a small
computational cost. However, our method still suffers from
the risks that many generative models face, such as fake data
generation. Reliable video forgery detection techniques
may be a solution to these problems.
Discussions. We provide some failure examples in
Fig. S10. For subject customization, our approach is lim-
ited by the inherent capabilities of the base model. For ex-
ample, in Fig. S10(a), the basic model fails to generate a
video like “a wolf riding a bicycle”, causing our method to
inherit this limitation. The possible reason is that the cor-
relation between “wolf” and “bicycle” in the training set
during pre-training is too weak. For motion customization,
especially fine single video motion, our method may only
learn the similar (rough) motion pattern and fails to achieve
frame-by-frame correspondence, as shown in Fig. S10(b).
Some video editing methods may be able to provide some
solutions [2, 3, 18]. For video customization, some dif-
ficult combinations that contain multiple objects, such as
“cat” and “horse”, still remain challenges. As shown in
Fig. S10(c), our approach confuses “cat” and “horse” so
that both exhibit “cat” characteristics. This phenomenon
also exists in multi-subject image customization [9]. One
possible solution is to further decouple the attention map of
each subject.
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Figure S1. Qualitative comparison of customized video generation with both subjects and motions.
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Figure S2. Qualitative comparison of subject customization between our method and Custom Diffusion [9].
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Figure S3. More results of subject customization for Our DreamVideo.
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Figure S4. Qualitative comparison of motion customization.
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Figure S5. More results of motion customization for Our DreamVideo.
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Figure S6. Qualitative ablation studies on each component.
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Figure S7. Qualitative comparison of video customization be-
tween Adapter and LoRA. The Adapter and LoRA here have the
same hidden dimension (rank) and a comparable number of pa-
rameters.
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(a) Comparison results. Change foreground (bear) and background (road).
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Text2LIVE

a dog running on the land (Single video)

a bear running on the road

Figure S8. Extra qualitative comparison of motion customiza-
tion on DAVIS dataset.
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Figure S9. Extra ablation study of appearance guidance
and multi-seed results on motion customization from DAVIS
dataset.



(a) Failure cases on subject customization. 

(b) Failure cases on motion customization. 

(c) Failure cases on video customization. 
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a cat eating a watermelon
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Generated
video
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Generated
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Generated
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Subject
+

Motion
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…

a cat is riding a horse

cat

+

Figure S10. Failure cases. (a) Our method is limited by the in-
herent capabilities of the base model. (b) Our method may only
learn the similar motion pattern on a fine single video motion. (c)
Some difficult combinations that contain multiple objects still re-
main challenges.
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