
A. Supplementary Explanation of Table 2
Table 2 evaluates the execution success rate of commands of
5 instruction categories across 4 different driving sequences.
For each category, the accuracy is measured as the average
success rate across 3 trials of 15 commands that are specifi-
cally designed for this category. Each trial is deemed success-
fully executed if the LLM-agent(s) accurately perform the
required operations, including setting correct configurations
and parameter values.

B. Supplementary Experiments
B.1. Supplementary Experiments of Lighting Esti-

mation.

We merge multi-view inputs into a wide-angle image for
lighting estimation baselines with results in right table.
McLight still significantly outperforms. Intensity evalua-
tion, not involving multi-view inputs, remains the same as
paper Tab.4.

Method, Multi-view (MV) version MV Hold-Geoffroy MV Wang McLight (Ours)

Peak Angular Error(Mean/Median) 36.7/37.1 33.7/29.3 32.3/26.5

B.2. Supplementary Experiments of Background
Rendering.

Table below shows ablations to train baselines with the multi-
camera alignment used in McNeRF. Multi-camera alignment
is a general and practical trick which improves the rendering
performance consistently, and our McNeRF(with exposure)
still outperforms other baselines.

Methods PSNR↑ SSIM↑ LPIPS↓ Inf. time (s)↓

DVGO + Alignment 24.65 0.787 0.487 7.7
Mip-NeRF360 + Alignment 25.50 0.759 0.514 101.8

S-NeRF + Alignment 25.53 0.760 0.513 114.5
F2NeRF + Alignment 25.18 0.819 0.381 2.4

F2NeRF + Alignment + Exposure (Ours) 25.82 0.822 0.378 2.5

C. LLM-Agents Details
C.1. Agent Implement Details

LLM-Agents consist of their LLM (Large Language Model)
component and corresponding functionalities. All exper-
iments utilize the GPT-4 API[5] to implement the LLM
part. In each agent’s prompt, there are elements involving
the agent’s function, the definition of actions that the agent
needs to perform, the definition of information inputted to
the agent, and the definition of outputs required from the
agent. To facilitate the integration of Python code and ensure
stable calls, the LLM part is required to return information
in the format of a JSON dictionary. Additionally, each LLM
part’s prompt includes some examples, which contain inputs
for certain scenarios and the corresponding expected outputs.

If the input command does not contain the information of
the keys of the output JSON dictionary, a default one will be
filled in the dictionary. The parameters related to the GPT-4
API are all set to the official default values.

Note that, for supporting modification operations during
multi-round commands, the 3D asset management agent, the
vehicle motion agent, and the vehicle deleting agent have the
ability to modify the information of already added or deleted
cars.

C.2. Reasoning Processes

This section describes the natural language reasoning pro-
cesses for the three cases presented in Section 5.2 of the
main text.

Mixed and complex command. The initial input com-
mand is: "Remove all cars in the scene and add a Porsche
driving the wrong way toward me fast. Additionally, add a
police car also driving the wrong way and chasing behind
the Porsche. The view should be moved 5 meters ahead
and 0.5 meters above." The command is decoupled by the
project manager agent as following commands: 1."Remove
all cars."; 2. "Add a Porsche driving the wrong way toward
me fast."; 3. "Add a police car also driving the wrong way
and chasing behind the Porsche."; 4. "The view should be
moved 5 meters ahead and 0.5 meters above.". The "Remove
all cars." command is distributed to the vehicle deleting
agent, and then the agent finds the 3D boxes of all cars and
applies the inpainting function for the removal operation.
"Add a Porsche driving the wrong way toward me fast." com-
mand is distributed to the 3D asset management agent for
selecting the proper 3D asset. This command will also be
distributed to the vehicle motion agent, which utilizes the
key information in the command including "wrong way",
"toward me" and "fast" to choose the appropriate start and
end points and generate the motion with the motion gener-
ation function. "Add a police car also driving the wrong
way and chasing behind the Porsche." command will also
be executed in the same way as the former operation. This
command mentions the information of the added car, and the
added car’s information has been memorized by the project
manager. This information is offered to the vehicle mo-
tion agent for determining the added police car’s location.
"The view should be moved 5 meters ahead and 0.5 meters
above." command is distributed to the view adjustment agent.
The view adjustment agent returns the adjustment informa-
tion of extrinsic as configuration, and calls the function to
change the extrinsics to achieve view adjustment. Finally,
background rendering and foreground rendering agents are
required to generate the background and foreground results
according to the information returned by the other agents,
and the results are composed as the final outputs.

Highly abstract command. The initial input command
is: "Create a traffic jam." The project manager agent ana-



lyzes the command and decouples it as multiple repeats of
car addition. These addition commands are processed by the
3D asset management agent and vehicle motion agent suc-
cessively and are rendered by the foreground rendering agent.
Combined with the rendered results from the background
rendering agent, we can get the final outputs.

Multi-round command. The first initial command is:
"Ego vehicle drives ahead slowly. Add a car to the close
front that is moving ahead.” The command is decoupled by
the project manager agent as 1: "Ego vehicle drives ahead
slowly."; 2: "Add a car to the close front that is moving
ahead.". The first sub-command is distributed to view the
adjustment agent, and the agent generates the extrinsics that
represent moving ahead slowly. The second sub-command
is executed as the process introduced above.

The second initial command is: "Modify the added car to
turn left. Add a Chevrolet to the front of the added car. Add
another vehicle to the left of the added Mini driving toward
me." The command is decoupled by the project manager
agent as 1: "Modify the added car to turn left."; 2: "Add a
Chevrolet to the front of the added car."; 3: "Add another
vehicle to the left of the added Mini driving toward me." The
first sub-command is distributed to the vehicle motion agent,
which generates new motion based on the command for the
determined added car. The following two sub-commands are
executed in the same way as mentioned in the paragraphs
above. Compositing the outputs of background rendering
and foreground rendering agents can get the final outputs.

D. Skydome Lighting Estimation Details
D.1. HDRI dataset

We collect 449 high-quality outdoor panorama HDRIs from
Poly Heaven Website. These HDRIs are all licensed as CC0.
We randomly selected 357 HDRIs for the training set and
the remaining for the test set. A script for downloading these
HDRIs will be available.

D.2. LDR to HDR Skydome Reconstruction

In this step, we utilize our HDRI dataset to train an LDR to
HDR autoencoder with the aim of converting the skydome
into a compact feature representation. We use the sRGB
opto-electronic transfer function (also known as gamma cor-
rection) to get the LDR sky panorama, and follow [8] to
transform the LDR sky panorama to 3 intermediate vectors,
including the sky content vector fcontent ∈ R64, the peak
direction vector fdir ∈ R3 and the intensity vector fint ∈ R3

+.
In the process of converting intermediate vectors into a recon-
structed HDR sky panorama, we construct the peak direction
map Mdir, the peak intensity map Mint and the positional
encoding map Mpe.

Peak direction map (Mdir): For each pixel in Mdir, we
calculate the peak direction embedding. This calculation

utilizes a spherical Gaussian lobe, formulated as Mdir(u) =
e100∗(u·fdir−1), where fdir denotes the peak direction vector.
This map is represented in RH×W×1.

Peak intensity map (Mint): Each pixel in this map is deter-
mined based on its corresponding value in the peak direction
map. Specifically, for a given direction u, if Mdir(u) > 0.9,
then Mint(u) is assigned the value of fint. If not, Mint(u)
is set to zero. This map is represented in RH×W×3

+ .
Positional encoding map (Mpe): This map encodes the di-

rection vector of each pixel, determined through equirectan-
gular projection, thus contributing to the accurate reconstruc-
tion of the HDR sky panorama. It is defined in RH×W×3.

The input of the decoder Minput is a concatenation of
Mpe,Mdir and Mint. We use a 2D UNet to decode the
concatenated input map to the HDR sky panorama. For sky
content vector fcontent, we use an MLP to increase its feature
dimension, reshape it to a 2D feature map, and concatenate it
with the intermediate features at the bottleneck of the UNet.
This concatenated feature will be further decoded to the
HDR sky panorama.

In the context of HDR imaging, the intensity of the peak
often exhibits characteristics akin to an impulse response,
displaying pixel values that are significantly elevated by or-
ders of magnitude in comparison to adjacent pixels. This
presents a substantial challenge for the decoder in accurately
recovering these patterns. Thus, we design a residual con-
nection to explicitly inject the peak intensity information
into the final HDR sky panorama. Let Mpeak be the product
of Mdir and Mint, representing an attenuation encoded by a
spherical Gaussian lobe. In our design, we specifically sub-
stitute the decoded HDR sky panorama at the peak position
with Mpeak. This substitution is applied where the value
of Mint(u) is non-zero, ensuring that the peak position in
the HDR sky panorama is accurately represented by Mpeak.
This makes a significant difference between us and [8]. Ac-
curate and strong peak intensity can generate very strong
shadow effects, resulting in better rendering realism. See
Figure 1.

To train the LDR to HDR skydome reconstruction, we
computer the ground truth peak direction fgtdir and peak in-
tensity fgtint from the HDR ground-truth. During the net-
work training process, we employ four losses for supervision.
These losses are as follows: peak direction loss Ldir, which
measures the L1 angular error of the peak direction vectors;
peak intensity loss Lint, which quantifies the log-encoded
L2 error of the peak intensity vectors; HDR reconstruction
loss Lhdr−recon, which evaluates the log-encoded L2 error
between the reconstructed HDR output and the ground truth
HDR data; LDR reconstruction loss Lldr−recon, which is cal-
culated as the L1 error between the input LDR sky panorama
and the gamma-corrected HDR reconstruction.

The total loss is Ltotal = λ1Ldir + λ2Lint +
λ3Lhdr−recon + λ4Lldr−recon, where λ1 = 1, λ2 =

https://polyhaven.com/hdris


Figure 1. LDR to HDR reconstruction network. We add an explicit spherical Gaussian lobe encoded attenuation to overcome the over-
smoothness in the decoded HDR panorama. It effectively ensures that the sun’s intensity significantly exceeds that of surrounding pixels,
rendering strong shadow effects for inserted objects.

Figure 2. Reconstructing HDR skydome from multi-camera images. Training on HoliCity [10] dataset.

0.1, λ3 = 2 and λ4 = 0.2.
Data augmentation methods, including rotation, flipping,

exposure adjustment and white balance adjustment, are im-
plemented to enrich the training data. Noticing a strong
white balance inaccuracy (the color temperature is too high)
in the image data from Waymo Open Dataset [7], we aug-
ment the HDRI with corresponding white balance adjust-
ment. The blue channel is randomly enlarged by 1.2-1.3
times, and the red channel is randomly reduced by 1.2-1.3
times.

D.3. Predict HDR Skydome from Multi-Camera
Images

This step involves estimating skydome lighting from multi-
camera images collected by the vehicle. The core idea is
to estimate intermediate features from multiple views and
restore the skydome lighting using the well-trained HDR
reconstruction decoding module. We emphasize the fusion
of intermediate features from multiple cameras to get a com-
plementary and comprehensive prediction for the skydome
lighting.

Multi-camera image data will first go through a shared
image encoder to predict the peak direction vector f (i)dir , the
intensity vector f (i)int , and the sky content vector f (i)content for
each image I(i), where i is the camera index. For those
vectors from N cameras, we fuse all the features in the
following strategy:

We transform f
(i)
dir , i = 1, 2, ..., N to the front-facing view

using their extrinsic parameters and averaged the rotated di-
rection vector to f̄dir; we average f

(i)
int , i = 1, 2, ..., N to f̄int;

we utilize the attention mechanism to fuse sky content vec-
tors as f̄content = Attn(q, k, v), where q = f

(0)
content,

k = v = stack({f icontent}i=0,1,...,N−1). Here index 0
refers to the first (front-facing) view image and Attn(·, ·, ·)
the standard attention operator. Given f̄dir, f̄int, f̄content, we
use the pre-trained decoding module from the previous stage
to recover the fused intermediate vectors to HDR panorama.
See Figure 2.

Since there is no relevant panoramic data in the au-
tonomous driving dataset for supervision, We use HoliC-
ity [10] to simulate multi-camera images. Based on the
arrangement and FOV of the three forward-facing cameras
on the Waymo vehicle [7], we cropped the corresponding
image from the HoliCity panorama as the model inputs. To
supervise the learning of the image encoder, we use the LDR
to HDR reconstruction network from the previous stage to
generate pseudo peak intensity vector GT, peak direction
vector GT, sky content vector GT, and HDR skydome GT.

We apply five losses to supervise the network during train-
ing. These losses are as follows: the peak direction loss Ldir,
which measures the L1 angular error of the fused peak di-
rection vector; the peak intensity loss Lint, which calculates
the log-encoded L2 error of the fused peak intensity vec-
tors; the sky content loss Lcontent, which evaluates the L1
error of the fused sky content vectors; the HDR reconstruc-
tion loss Lhdr−recon with log-encoded L2 error; the LDR
reconstruction Lldr−recon with L1 error.

The total loss is Ltotal = λ1Ldir+λ2Lint+λ3Lcontent+
λ4Lhdr−recon + λ5Lldr−recon, where λ1 = 0.5, λ2 =
0.25, λ3 = 0.005, λ4 = 0.1 and λ5 = 0.2.



E. 3D Asset Bank
To ensure ease of access and modification of 3D assets, we
normalize our Blender models within their Blender files
using the following procedure:
1. We ensure that the model has accurate physical dimen-

sions in the unit of meter.
2. The origin of the car model is set at the middle of the bot-

tom of the car. We position the model at the center of the
world coordinate system, ensuring that the car model’s
origin aligns with the origin of the world coordinate sys-
tem. The car is oriented to face the positive direction of
the x-axis.

3. We uniformly apply the Principled BSDF mate-
rial to the car body, and name the material "car_paint".
Prompt that changes the asset’s color will affect the "Base
Color" attribute of the Principled BSDF node.

4. We use the Join operator to merge all meshes into one
object.
Following the aforementioned approach, we normalize

the Blender models collected from the Internet to continu-
ously expand our 3D Asset Bank.

F. Blender Rendering Details
We fully implement the Blender rendering workflow using
Python scripting, incorporating features such as alpha chan-
nel, depth channel, and shadow effect, all achieved within
a single rendering pass.
1. To get a transparent background, we first en-

able the Render Properties - Film -
Transparent option.

2. To get multiple rendering output, we enable the
Combined pass, Z pass and Shadow Catcher pass
in View Layer Properties panel.

3. To render the shadow, we add a very large plane under the
car and enable the plane’s Object Properties -
Visibility - Mask - Shadow Catcher op-
tion.

4. To obtain scene-related colored shadows, we construct the
compositing node graph as Figure 3. This configuration
generates the rendered image overlaid on the scene image,
along with the accompanying depth information and mask
of the vehicle and its corresponding shadow.

5. Using depth information and mask, we can handle the
occlusion relationship with the original objects in the
scene. We also added a moderate amount of motion blur
to the rendered car to match the background.

G. Motion Generation Details
The vehicle motion agent creates the initial places and subse-
quent motions of vehicles following the requests commands.
Existing vehicle motion generation methods cannot directly

Figure 3. Compositing node graph design in Blender [1]

Figure 4. The neighboring area division for vehicle placement.

generate motion purely from text and the scene map. Here
we elaborate on the details of our text-to-motion methods.
Our method consists of two parts: vehicle placement to
generate the starting points and vehicle motion planning to
generate the subsequent motions.

G.1. Vehicle Placement

We use the language command and the scene map to
generate the initial position. The scene map M follows
the lane map form M = {ni, i = 1, 2, · · · ,m}, where
m is the number of lane nodes and the ith lane node
ni = (xs, ys, xe, ye, ctype) consists of lane starting posi-
tion (xs, ys), ending position (xe, ye) and the lane type ctype.
The map range is cropped with the range of front 80m, left
20m and right 20m. Generally, we use the lane map from
the ground-truth data. If the lane map does not exist, it is
applicable to use a lane map estimation method like [3, 4] to
obtain the lane map.

Given the language command, the LLM first extracts
key placement attributes, including vehicle number, distance
range, relative direction with the observer and direction of
driving, and crazy mode. With these attributes, the role
function of placement begins to find suitable lane nodes from
the scene map. Here we assume all the placed vehicles are on
the centerline of the road. If the distance range (dmin, dmax)
is identified, the role function selects the lane centerline
nodes according to their distance with the ego location. For
the relative direction, we divide the ego neighboring area into
6 categories: front, left front, right front, left, right, and back,
see Figure 4 for illustration. For the direction of driving,



we consider two types: driving close to the ego and driving
away from the ego, which determines the left/right side of the
vehicle on the road. The crazy mode, which is designed for
non-compliant inverse driving behavior, is a bool variable.
When it is true, we will inverse the direction of the map
(swap the starting and ending point of each lane) for that
vehicle to represent inverse driving. We select the matched
lane node set and randomly select one lane node from the
set. We also consider the conflict of placing vehicles by an
iterative approach that incoming vehicles should not overlap
with the existing vehicles. After obtaining lane nodes for
every vehicle, we set the midpoint of the lane node to be the
initial position of a vehicle and the direction of the lane to
be the initial heading of the vehicle.

G.2. Vehicle Motion Planning

After obtaining the initial positions, we generate motions in
two steps: plan the destination and plan the middle trajectory.
We first extract movement attributes including speed, action,
interval and time length. Notably, we divide actions into 5
categories: straightforward, turn left, turn right, park, and
backward. To obtain the destination, if the action category is
straightforward or park, and backward, we directly calculate
a raw destination by assuming the car driving following a
line with the target speed. Then we find the closest lane node
with the raw destination to be the final destination. If the
action category is turning left or turning right, we select a
set of nodes whose vertical distance with the initial line of
heading is in a range (5m-30m) and fit the driving directions
(the direction of the line should be away from the starting
point). We randomly pick a lane node to be the destination.

To plan the middle trajectory, we use an iterative adjust-
ment approach to make the trajectory match with the map
and avoid off-road driving. We first use one cubic Bezier
curve to fit the overall trajectory with the condition of starting
point, starting direction, ending point and ending direction.
The cubic Bezier curve is formulated by

B(t) =(1− t)3P0 + 3t(1− t)2P1

+ 3t2(1− t)P2 + t3P3, t ∈ [0, 1],
(1)

where P0, P1, P2, P3 ∈ R2 is the control points that can
be solved by given starting point, starting direction, ending
point and ending direction. Then to avoid off-road driving of
the intermediate trajectory, we adjust the middle coordinate
by replacing it with the closest lane node. We split the whole
trajectory into two parts with the boundary of the middle
coordinate and use one cubic Bezier curve to fit each split
trajectory. We iteratively repeat the process to represent the
planned trajectory by multiple cubic Bezier curves. Finally,
to make the planned trajectory fit with vehicle dynamics, we
use a trajectory tracking method in [9] as post-processing to

Sequence Start Frame

segment-10247954040621004675_2180_000_2200_000 0
segment-13469905891836363794_4429_660_4449_660 40
segment-14333744981238305769_5658_260_5678_260 40
segment-1172406780360799916_1660_000_1680_000 50
segment-4058410353286511411_3980_000_4000_000 90
segment-10061305430875486848_1080_000_1100_000 30
segment-14869732972903148657_2420_000_2440_000 0
segment-16646360389507147817_3320_000_3340_000 0
segment-13238419657658219864_4630_850_4650_850 0
segment-14424804287031718399_1281_030_1301_030 60
segment-15270638100874320175_2720_000_2740_000 60
segment-15349503153813328111_2160_000_2180_000 100
segment-15868625208244306149_4340_000_4360_000 110
segment-16608525782988721413_100_000_120_000 10

segment-17761959194352517553_5448_420_5468_420 0
segment-3425716115468765803_977_756_997_756 0

segment-3988957004231180266_5566_500_5586_500 0
segment-9385013624094020582_2547_650_2567_650 130
segment-8811210064692949185_3066_770_3086_770 30
segment-10275144660749673822_5755_561_5775_561 0
segment-10676267326664322837_311_180_331_180 100

segment-12879640240483815315_5852_605_5872_605 20
segment-13142190313715360621_3888_090_3908_090 0
segment-13196796799137805454_3036_940_3056_940 70
segment-14348136031422182645_3360_000_3380_000 140
segment-15365821471737026848_1160_000_1180_000 0
segment-16470190748368943792_4369_490_4389_490 0
segment-11379226583756500423_6230_810_6250_810 0
segment-13085453465864374565_2040_000_2060_000 110
segment-14004546003548947884_2331_861_2351_861 0
segment-15221704733958986648_1400_000_1420_000 70
segment-16345319168590318167_1420_000_1440_000 0

Table 1. Information on the selected and trimmed Waymo Open
Dataset [7]. For each sequence, we select 40 frames starting from
the Start Frame.

revise the planned trajectory1.

H. Background rendering details
H.1. Dataset Selection

For all Waymo Open Dataset [7] experiments, we use images
captured from three frontal cameras. The details of selection
are shown in Table 1. There are 120 images in total for each
scenerio.

H.2. Multi-Camera Alignment

This section will introduce the details of our multi-camera
alignment algorithm. Let RCi,t and TCi,t represents the
camera Ci’s extrinsic matrix that aligned to vehicle’s coordi-
nates at timestamp t. C0 is the front camera. The superscript
(V ) and (M) represents the original vehicle’s coordinates
in autonomous driving dataset and the coordinates under
Metashape’s unified space. Then the rotation RCi,t and
translation TCi,t can be calculated as:

RCi,t = R
(V )
C0,0

(R
(M)
C0,0

)−1R
(M)
Ci,t

TCi,t =
R

(V )
C0,0

(R
(M)
C0,0

)−1(T
(M)
Ci,t

− T
(M)
C0,0

)

S
+ T

(V )
C0,0

,

1https://drl-based-trajectory-tracking.readthedocs.io/en/latest/

https://drl-based-trajectory-tracking.readthedocs.io/en/latest/


Figure 5. Qualitative ablation of background rendering. (a) Mc-
NeRF w/o pose alignment.(b) McNeRF w/o exposure. (c) Full
McNeRF. Last row: target images.

where S =
T

(M)
C0,1−T

(M)
C0,0

T
(V )
C0,1−T

(V )
C0,0

is a scaling factor that ensures the

aligned space has the same unit length as the real world.

I. Supplymentary Experiments

I.1. Qualitative Ablation Study of Background Ren-
dering

Figure 5 illustrates the effects of the ablation study on back-
ground rendering. It is evident that in the absence of pose
adjustment, the rendered results exhibit significant blur and
anomalies. Without the intervention of exposure adjustments,
there are noticeable changes in brightness at the junctions of
different cameras, particularly in the sky. McNeRF, however,
successfully avoids these two issues and achieves the optimal

rendering outcomes.

I.2. Occlusion with Depth Test

During the process of adding vehicles, there may be in-
stances of occlusion. For occlusions among multiple vehi-
cles to be added, Blender considers this issue during the
rendering process. Therefore, we only need to focus on the
occlusion between the foreground vehicles and the back-
ground objects. The most straightforward method to handle
occlusion is determined by the depth map of the foreground
and background, respectively. The depth maps of both the
foreground and background could be used to choose for each
pixel with the lesser depth to be displayed in the front, while
the one with greater depth is occluded. However, accurately
estimating the background’s depth map directly is challeng-
ing. The point cloud data in autonomous driving datasets is
too sparse, and the depth maps obtained through depth com-
pletion are also sparse and excessively noisy, making them
unsuitable for pixel-level accuracy in practical use. Here,
we combine the sparse depth data from point clouds with
the object segmentation method SAM[2]. SAM can achieve
pixel-level accuracy in segmentation results at the image
level, without extra finetuning. We first use SAM to ob-
tain different patches in the background image, then identify
patches that overlap with the foreground objects. Using the
sparse depth map derived from the point clouds, we calculate
the average sparse depth within these patches as the depth
of each patch. Since the segmentation results of patches
often represent a complete instance, and occlusion occurs
between instances, it is reasonable to calculate the depth for
the entire instance represented by a patch. Subsequently, we
create the background’s depth map from the depths of these
patches and perform occlusion calculations with the depth
map rendered for the foreground, presenting each pixel with
the lesser depth to finalize the occlusion computation. The
results of the occlusion calculation, as shown in Fig. 6, il-
lustrate that the added vehicles are occluded by those with
shallower depths. This figure also displays the adjustment of
the added vehicles’ colors.

I.3. Rare Cases Simulation

Leveraging diverse external digital assets, ChatSim can sim-
ulate rare and challenging-to-collect real-world scenarios
within reconstructed existing scenes. Figure 7 demonstrates
ChatSim’s ability to emulate rare cases by placing uncom-
mon elements like bulldozers, isolation piers, fences, ex-
cavators, and other infrequently encountered situations in
reconstructed scenes. This capability enables ChatSim to
create rare digital twins for existing collected data, thus
fulfilling the need for these specific scenarios.



Figure 6. Qualitative result of occlusion postprocess and the color control for added car.

Figure 7. Qualitative results of rare cases simulation.

Simulation data AP30 AP50 AP70
0 0.1263 0.0366 0.0034

600 0.1910 0.0878 0.0153
1000 0.2074 0.0930 0.0189
2200 0.2064 0.0900 0.0182

Table 2. Comparison of detection model’s performance with differ-
ent number of data simulated by ChatSim

I.4. Supplementary 3D Detection Augmentation Ex-
periment

We conducted 3D detection augmentation experiments under
a new setting: we fixed the real data amount from the orig-
inal dataset at 4200 frames and augmented it with varying
quantities of simulation data generated by ChatSim. We
continued to use Lift-Splat [6] as the detection model, with
results shown in Table 2. It is observed that the use of simu-
lation data significantly enhances the performance of the 3D
detection task. As the amount of simulation data increases,
the final performance tends to stabilize after a certain point
of improvement.

References
[1] Blender Online Community. Blender - a 3D modelling and

rendering package. Blender Foundation, Stichting Blender
Foundation, Amsterdam, 2018. 4

[2] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao,

Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer White-
head, Alexander C Berg, Wan-Yen Lo, et al. Segment any-
thing. arXiv preprint arXiv:2304.02643, 2023. 6

[3] Bencheng Liao, Shaoyu Chen, Xinggang Wang, Tianheng
Cheng, Qian Zhang, Wenyu Liu, and Chang Huang. Maptr:
Structured modeling and learning for online vectorized hd
map construction. arXiv preprint arXiv:2208.14437, 2022. 4

[4] Bencheng Liao, Shaoyu Chen, Yunchi Zhang, Bo Jiang, Qian
Zhang, Wenyu Liu, Chang Huang, and Xinggang Wang. Map-
trv2: An end-to-end framework for online vectorized hd map
construction. arXiv preprint arXiv:2308.05736, 2023. 4

[5] OpenAI. Gpt-4 technical report. 2023. 1
[6] Jonah Philion and Sanja Fidler. Lift, splat, shoot: Encoding

images from arbitrary camera rigs by implicitly unprojecting
to 3d. In Computer Vision–ECCV 2020: 16th European
Conference, Glasgow, UK, August 23–28, 2020, Proceedings,
Part XIV 16, pages 194–210. Springer, 2020. 7

[7] Pei Sun, Henrik Kretzschmar, Xerxes Dotiwalla, Aurelien
Chouard, Vijaysai Patnaik, Paul Tsui, James Guo, Yin Zhou,
Yuning Chai, Benjamin Caine, et al. Scalability in perception
for autonomous driving: Waymo open dataset. In Proceedings
of the IEEE/CVF conference on computer vision and pattern
recognition, pages 2446–2454, 2020. 3, 5

[8] Zian Wang, Wenzheng Chen, David Acuna, Jan Kautz, and
Sanja Fidler. Neural light field estimation for street scenes
with differentiable virtual object insertion. In European Con-
ference on Computer Vision, pages 380–397. Springer, 2022.
2

[9] Yinda Xu and Lidong Yu. Drl-based trajectory tracking



for motion-related modules in autonomous driving. arXiv
preprint arXiv:2308.15991, 2023. 5

[10] Yichao Zhou, Jingwei Huang, Xili Dai, Linjie Luo, Zhili
Chen, and Yi Ma. HoliCity: A city-scale data platform for
learning holistic 3D structures. 2020. arXiv:2008.03286
[cs.CV]. 3


