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Supplementary Material

A. Implementation Details

The architecture for each pre-trained model and the meta-learner is based on Conv4. Common in meta-learning studies [1, 2, 7],
Conv4 consists of four convolutional blocks, with each block comprising 32 3× 3 filters, a BatchNorm layer, a ReLU function,
and a 2× 2 max-pooling layer. All pre-trained models are constructed to solve various 5-way tasks by randomly choosing
5 classes from the meta-training set (be it CIFAR-FS, miniImageNet, or CUB). With the Adam optimizer, these models are
pre-trained using standard supervised learning at a learning rate of 0.01. In our experiments, we collect a set of 100 pre-trained
models. For the task recovery, we generate 20 images for each class. The meta-generator parameters θG and input Z are
optimized simultaneously using the Adam optimizer, aiming to minimize Eq. (1) over k steps with a learning rate of 0.001.
Similarly, the cloned meta-learner parameters θ̃ are optimized by minimizing Eq. (3) with an inner loop learning rate set
at 0.001. For the cross task replay, we employ MAML to execute meta-learning on tasks sampled in the memory bank.
Following [4, 5], we use the Adam optimizer, set with inner and outer loop learning rates of 0.01 and 0.001, respectively.

In the multi-domain scenario, all pre-trained models are designed to address diverse tasks spanning several meta-training
sets. We also take Conv4 as the architecture of pre-trained models and the meta-learner. Pre-trained models are designed for
solving different 5-way tasks, which are devised by randomly sampling 5 classes from multiple meta-training sets, including
CIFAR-FS, miniImageNet, and CUB. For meta-testing, we evenly construct 1800 meta-testing tasks across all meta-testing sets,
including CIFAR-FS, miniImageNet, and CUB. All other configurations remain consistent with the primary results.

B. Architecture of the Generator

Tab. 1 lists the structure of the meta-generator in our proposed FIVE. The meta-generator takes the standard Gaussian noise as
inputs and outputs the recovered data. Here, dz is the dimension of Gaussian noise data z, which is set as 256 in practice.
The negative slope of LeakyReLU is 0.2. We set image size as 32 for models pre-trained on CIFAR-FS and 84 for models
pre-trained on miniImageNet and CUB. We set the number of channels nc as 3 for color image recovery and the number of
convolutional filters nf as 64.

Table 1. Detailed structure of the meta-generator. We highlight the dimension change in red.

Notion Description

img size × img size resolution of recovered image
bs batch size
nc number of channels of recovered image
nf number of convolutional filters

FC(·) fully connected layer;
BN(·) batch normalization layer

Conv2D(input, output,filter size, stride, padding) convolutional layer

Structure Dimension
Before After

z ∈ Rdz ∼ N (0,1) [ 1, dz ] [ bs, dz ]
FC(Z) [ bs, dz ] [ bs, 2× nf × (img size//4)× (img size//4) ]

Reshape [ bs, 2× nf × (img size//4)× (img size//4) ] [ bs, 2× nf, (img size//4), (img size//4) ]

BN [ bs, 2× nf, (img size//4), (img size//4) ] [ bs, 2× nf, (img size//4), (img size//4) ]
Upsampling [ bs, 2× nf, (img size//4), (img size//4)) ] [ bs, 2× nf, (img size//2), (img size//2)) ]

Conv2D(2× nf, 2× nf, 3, 1, 1) [ bs, 2× nf, (img size//2), (img size//2)) ] [ bs, 2× nf, (img size//2), (img size//2)) ]
BN, LeakyReLU [ bs, 2× nf, (img size//2), (img size//2)) ] [ bs, 2× nf, (img size//2), (img size//2)) ]

Upsampling [ bs, 2× nf, (img size//2), (img size//2)) ] [ bs, 2× nf, img size, img size ]

Conv2D(2× nf, nf, 3, 1, 1) [ bs, 2× nf, img size, img size ] [ bs, nf, img size, img size ]
BN, LeakyReLU [ bs, nf, img size, img size ] [ bs, nf, img size, img size ]

Conv2D(nf, nc, 3, 1, 1) [ bs, nf, img size, img size ] [ bs, nc, img size, img size ]
Sigmoid [ bs, nc, img size, img size ] [ bs, nc, img size, img size ]



C. Theoretical Proofs
Lemma 1. If LKD has Lipschitz Hessian, then:

∇θ̃LKD(Ti; θ̃) = ∇θLKD(Ti;θ) +O(α2)

− α∇2
θLKD(Ti;θ)∇θLKD(Tj ;θ),

where α is the step size of the inner loop.

Proof. Applying the fundamental theorem of Taylor’s expansion to the gradient ∇θ̃LKD(Ti; θ̃), we have:

∇θ̃LKD(Ti; θ̃)

=∇θLKD(Ti;θ) +∇2
θLKD(Ti;θ)(θ̃ − θ) +O(∥θ̃ − θ∥2)︸ ︷︷ ︸

=O(α2)

=∇θLKD(Ti;θ) +∇2
θLKD(Ti;θ) (θ̃ − θ)︸ ︷︷ ︸

−α∇θLKD(Tj ;θ)

+O(α2)

=∇θLKD(Ti;θ)− α∇2
θLKD(Ti;θ)∇θLKD(Tj ;θ) +O(α2).

Theorem 1. If Ti can be regarded as independent identically distributed samples from the distribution PM , then:

∇θLKD(Ti; θ̃) = ∇θLKD(Ti;θ) +O(α2)

− α∇ (∇θLKD(Ti;θ)∇θLKD(Tj ;θ))︸ ︷︷ ︸
GradientAlignment

,

i.e., the inner product between gradients of different tasks.

Proof. We have:

∇θLKD(Ti; θ̃)

=∇θ̃LKD(Ti; θ̃)
∂θ̃

∂θ

=∇θ̃LKD(Ti; θ̃)
∂(θ − α∇θLKD(Tj ;θ))

∂θ

=∇θ̃LKD(Ti; θ̃)(I − α∇2
θLKD(Tj ;θ))

=∇θ̃LKD(Ti; θ̃)− α∇θ̃LKD(Ti; θ̃)∇2
θLKD(Tj ;θ).

Then, we can replace ∇θ̃LKD(Ti; θ̃) using Lemma 1. Concurrently, any term that is a high-order term in α is classified
into the O(α2) notation:

∇θLKD(Ti; θ̃)
=∇θLKD(Ti;θ) +O(α2)

−α∇2
θLKD(Ti;θ)∇θLKD(Tj ;θ)

−α∇2
θLKD(Tj ;θ)∇θLKD(Ti;θ)

=∇θLKD(Ti;θ) +O(α2)

−α∇ (∇θLKD(Ti;θ)∇θLKD(Tj ;θ))︸ ︷︷ ︸
GradientAlignment

.



D. Effects of the Knowledge Distillation

In Sec. 4.2, we propose to transfer the task-specific knowledge from the pre-trained model (acting as the teacher) to the
meta-learner (acting as the student). Our experimental analysis (in Tab. 2) contrasts the utilization of hard labels in the
meta-learning with soft labels in the knowledge distillation. We observe that knowledge distillation facilitates more nuanced
supervision by capitalizing on the semantic class relationships inherent in the soft-label predictions provided by the teacher
models, resulting in superior performance.

Table 2. Effects of the knowledge distillation.

Method CIFAR-FS

5-way 1-shot 5-way 5-shot

Hard label 37.81 ± 0.75 50.35 ± 0.79

Ours 39.13 ± 0.85 52.58 ± 0.77

E. Discussions about Non-Inversion Methods

For data-free meta-learning, non-inversion methods attempt to solve the problem within the parameter space by integrating
multiple pre-trained models. Nevertheless, they ignore the underlying data knowledge that can be extracted from these
pre-trained models. Therefore, their performance is usually suboptimal and falls considerably short of inversion-based methods
(cf . Tab. 2 in the main text). Moreover, their use cases are limited to situations where all pre-trained models share the same
architecture, which does not address the problem of model heterogeneity—our key contribution.

By the way, it is difficult to compare their efficiency. Although non-inversion methods do not involve a model inversion
process, they may require the learning of a black-box neural network to predict model parameters [8], thereby lacking a unified
metric for time comparison.

F. Centered Kernel Alignment Analysis

To further illustrate the heterogeneity among pre-trained models, we employed Centered Kernel Alignment (CKA) [3, 6] to
assess the features extracted by various collected pre-trained models. CKA, a measure of feature similarity, is particularly
suited for multi-architecture comparisons because it can handle inputs of differing dimensions. The similarity heatmaps, as
shown in Fig. 1, clearly indicate significant differences in the feature distribution of heterogeneous models. This CKA analysis
suggests that directly applying meta-learning methods to recovered tasks without considering their heterogeneity may lead to
suboptimal outcomes. Consequently, new strategies to align recovered tasks are necessary for data-free meta-learning.
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(a) Multi-task scenario
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(b) Multi-domain scenario
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(c) Multi-architecture scenario

Figure 1. Similarity heatmaps of heterogeneous models measured by CKA. We compare (a) pre-trained models for distinct tasks on
CIFAR-FS, (b) pre-trained models from datasets CIFAR-FS/miniImageNet/CUB, and (c) pre-trained models with architectures Conv4/ResNet-
10/ResNet-18. Coordinate axes indicate the indices of corresponding pre-trained models.
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