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A. Overview
The supplementary material encompasses the subsequent
components.
• Supplementary experiments

– Experiments on BlendedMVS
* Quantitative analysis
* Qualitative analysis

– Comparisons on segmentation models
• Network architecture
• Details of iterative mask lifting
• Implementation of side-by-side comparison

B. Supplementary experiments
B.1. Experiment on BlendedMVS

BlendedMVS [9] is also widely used for 3D reconstruction
with more complex backgrounds. We select 7 challenged
scenes from the dataset. The images in BlendedMVS have
a resolution of 768 × 576. One-eighth of the images are
held out as test sets. In this section, we quantitatively com-
pare the render quality between NTO3D and baseline. Since
ground truth meshes aren’t provided by the datasets, we
further qualitatively compare the reconstruction meshes be-
tween NTO3D and baseline. Since training with or without
masks has a significant impact on reconstruction quality, we
take NeRF [5] and NeuS [7] as our baselines and divide
them into two settings.

Quantitative analysis As shown in Tab. 1, our pro-
posed method NTO3D achieves competitive performance
on novel view synthesis in the selected scenes compared
with baseline. Training with masks often leads to higher
rendering performance, since the background is noisy and
significantly affects the learning of target objects. With
the proposed techniques, the model can focus on the tar-
get object with masks obtained by the proposed 3D Occu-
pancy Field. The results demonstrate that our iterative lift-

Table 1. Quantitative comparisons with other methods on the task
of novel view synthesis. Mean represents the average value of
PSNR and SSIM.

Scene Bell Clock Statue Shoe Sculpture Bread Durian Mean

Train w/o mask setting
PSNR(NeuS) 22.46 29.67 22.18 28.43 21.54 24.27 24.25 24.69
PSNR(NeRF) 26.14 26.57 20.32 23.57 18.85 22.90 33.92 24.61

SSIM(NeuS) 0.845 0.902 0.874 0.918 0.789 0.960 0.871 0.880
SSIM(NeRF) 0.941 0.875 0.841 0.839 0.732 0.901 0.981 0.872

Train w/ mask setting
PSNR(NeuS) 24.06 34.77 22.47 26.07 28.87 29.17 24.45 27.12
PSNR(Ours) 29.29 29.67 32.74 35.39 31.63 34.87 29.41 31.86

SSIM(NeuS) 0.910 0.970 0.887 0.888 0.924 0.916 0.920 0.916
SSIM(Ours) 0.899 0.903 0.934 0.987 0.892 0.966 0.898 0.926

ing method can produce high-quality masks that help the
neural fields to converge better.

Qualitative analysis As we can see in Fig. 1, for base-
lines that train without masks models background as well
and generate meshes with a background. With the help of it-
erative mask lifting, NTO3D can output fine-grained masks
that only segment the target objects. Thus the meshes gen-
erated by NTO3D are more precise. Additionally, we can
witness that although NeuS contains a background model
that helps to distinguish foreground objects, it fails when
facing a complex reconstruction environment.

B.2. Comparisons on segmentation models

SemanticNeRF [11] lifts the 2D semantic map to 3D space
while ours NTO3D utilizes a 3D SAM Feature Field to lift
2D features into 3D. To make a fair comparison, we take 2D
foreground masks generated by SAM to supervise Seman-
ticNeRF and compare surface reconstruction results with
NTO3D.

As shown in Tab. 2, although SemanticNeRF utilizes
masks from SAM to supervise the semantic branch, it fails
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Figure 1. Qualitative comparison on BlendedMVS.

Table 2. Chamfer distance comparison on different segmentation
models.

Scan ID 24 37 40 55 63 65 69 83 97 105 106 110 114 118 122 Mean

SemanticNeRF 1.65 2.36 1.21 1.34 2.31 1.28 1.78 2.65 1.36 1.71 0.96 1.74 1.21 1.35 1.24 1.61

NTO3D(Ours) 0.82 1.14 0.60 0.35 1.01 0.53 0.63 1.31 0.86 0.73 0.51 1.15 0.45 0.42 0.46 0.73

to reconstruct high-quality surfaces since it focuses on neu-
ral rendering instead of neural reconstruction. It is also
worth noting that NTO3D is dedicated to jointly segment-
ing and reconstructing target objects while SemanticNeRF
focuses on semantic segmentation.

C. Network Architecture

We introduce a Neural Target Object 3D Reconstruction
model called NTO3D, to efficiently leverage the benefits
of both neural field and SAM to reconstruct objects in-
dicated by humans. NTO3D is based on the neural sur-
face reconstructor Instant-NSR [10], which is similar to
Instant-NGP [6]. Our NTO3D consists of three concate-
nated MLPs: a 5-hidden-layer SDF MLP Ms, a 3-hidden-
layer color MLP Mc, and a 5-hidden-layer feature MLP Mf

both 64 neurons wide. The same as Instant-NSR, we re-
place the original ReLU activation with Softplus and set β
= 100 for the activation functions of all the hidden layers in



Ms. The input of the Ms is the concatenation of the 3 in-
put spatial location values of each 3D sampled point and the
32 output values from the hash encoded position. Then, we
apply a truncated function to the output SDF value which
maps it to [−1, 1] using the sigmoid activation. Mc also
adds view-dependent color variation by spherical harmonics
encoding function. The input of Mc is the concatenation of
the 3 input spatial location values of each 3D sampled point,
the 3 estimated normal values from the approximated SDF
gradient by finite difference function, the 16 output values
of the SDF MLP, and the view direction decomposed onto
the first 16 coefficients of the spherical harmonics basis up
to degree 4. We further apply a sigmoid activation to map
the output RGB color values into the range [0, 1]. As for
the Mf , to ensure pixel features correspond with voxel fea-
tures, we take the SDF features and color features from Ms

and Mc as Mf input. Then we add linear normalization in
the last layer and reshape the output of Mf into the size of
SAM encoder features. As for the 3D Occupancy Field, we
just output the features after hash encoding and apply the
max mechanism to satisfy the assumption in the main text.
Finally, they iteratively optimize until converge.

D. Details of Iterative Mask Lifting

In this paper, we propose a 3D Occupancy Field to iterative
lift 2D masks generated by SAM [3]. Before the iterative
optimization, we need to annotate the target object in one
view. We don’t deliberately choose the initial viewpoint but
just randomly select a view that contains the target object
without occlusion. Thanks to the generalization ability of
the 3D Occupancy Field and SAM, the selection of the ini-
tial view does not have much impact on the convergence of
the whole network. During training, we notice that the num-
ber of aggregation points affects the quality of prompts. In-
tuitively, more points are needed to help the SAM segment
in complex scenarios. Thus in scenes with more boundaries,
we need to increase the number of points to better prompt
SAM. However, more points can lead to worse segmenta-
tion results due to redundant information. In practice, no
more than 10 points are needed as prompts to fully describe
the target object. With the help of the proposed techniques,
we can obtain fine-grained masks in a short time.

E. Implementation of side-by-side comparison

Qualitative comparison with the SA3D. The side-by-
side qualitative comparison can be seen in Fig. 2. It can be
witnessed that NTO3D obtains higher reconstruction qual-
ity. Although SA3D [1] works well on rendering, it fails
to impose constraints on the geometry of target objects.
NTO3D effectively strikes a balance between neural render-
ing and reconstruction, thereby achieving results that sur-
pass SA3D [1].

Reference Image OursSA3D

Figure 2. Side-by-side qualitative comparison on LLFF [4].
SA3D [1] lacks geometric constraints on the object surface, lead-
ing to abundant artifacts. Ours NTO3D achieves better reconstruc-
tion quality.

User Prompts OursReference Image AutoRecon

Figure 3. Qualitative comparison of NTO3D and AutoRecon [8]
on BlendedMVS [9]. Please zoom in for more details. Mesh gen-
erated by NTO3D captures more details than AutoRecon [8]. In
addition, NTO3D outpaces AutoRecon [8] in terms of processing
speed.

Qualitative comparison with the AutoRecon. We fur-
ther implement a visualization comparison between
NTO3D and AutoRecon [8], which is shown in Fig. 3. Fur-
thermore, NTO3D takes about 5 minutes to train 3D Oc-
cupancy Field in Stage-1 and takes 15 minutes to train the
whole pipeline and converge in Stage-2. NTO3D is faster
than AutoRecon [8], which takes about 1 hour to extract
features and train to converge.

Building in BlendedMVS

Chair in Scannet scene0000_00

Figure 4. Results in complex scenes. NTO3D succeeds in pro-
ducing high-quality segmentation and reconstruction results. The
chair only appears in 11 out of 56 blur images. Sparse views and
motion blur impact the geometric quality to some extent. Despite
lower data quality in Scannet [2], NTO3D produces competitive
results.

Reconstruction results in more complex scenes. We
further implement an outdoor building in BlendedMVS [9]
and a chair in Scannet [2] “scene0000 00” in Fig. 4. It can
be witnessed that NTO3D also applies to the reconstruction
of more complex scenes.



References
[1] Jiazhong Cen, Zanwei Zhou, Jiemin Fang, Chen Yang, Wei

Shen, Lingxi Xie, Dongsheng Jiang, Xiaopeng Zhang, and
Qi Tian. Segment anything in 3d with nerfs. In NeurIPS,
2023. 3

[2] Angela Dai, Angel X Chang, Manolis Savva, Maciej Hal-
ber, Thomas Funkhouser, and Matthias Nießner. Scannet:
Richly-annotated 3d reconstructions of indoor scenes. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 5828–5839, 2017. 3

[3] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao,
Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer White-
head, Alexander C Berg, Wan-Yen Lo, et al. Segment any-
thing. arXiv preprint arXiv:2304.02643, 2023. 3

[4] Ben Mildenhall, Pratul P. Srinivasan, Rodrigo Ortiz-Cayon,
Nima Khademi Kalantari, Ravi Ramamoorthi, Ren Ng, and
Abhishek Kar. Local light field fusion: Practical view syn-
thesis with prescriptive sampling guidelines. ACM Transac-
tions on Graphics (TOG), 2019. 3

[5] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,
Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view syn-
thesis. Communications of the ACM, 65(1):99–106, 2021.
1

[6] Thomas Müller, Alex Evans, Christoph Schied, and Alexan-
der Keller. Instant neural graphics primitives with a mul-
tiresolution hash encoding. ACM Transactions on Graphics
(ToG), 41(4):1–15, 2022. 2

[7] Peng Wang, Lingjie Liu, Yuan Liu, Christian Theobalt, Taku
Komura, and Wenping Wang. Neus: Learning neural implicit
surfaces by volume rendering for multi-view reconstruction.
arXiv preprint arXiv:2106.10689, 2021. 1

[8] Yuang Wang, Xingyi He, Sida Peng, Haotong Lin, Hujun
Bao, and Xiaowei Zhou. Autorecon: Automated 3d object
discovery and reconstruction. In CVPR, 2023. 3

[9] Yao Yao, Zixin Luo, Shiwei Li, Jingyang Zhang, Yufan Ren,
Lei Zhou, Tian Fang, and Long Quan. Blendedmvs: A large-
scale dataset for generalized multi-view stereo networks. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 1790–1799, 2020. 1,
3

[10] Fuqiang Zhao, Yuheng Jiang, Kaixin Yao, Jiakai Zhang,
Liao Wang, Haizhao Dai, Yuhui Zhong, Yingliang Zhang,
Minye Wu, Lan Xu, et al. Human performance modeling
and rendering via neural animated mesh. arXiv preprint
arXiv:2209.08468, 2022. 2

[11] Shuaifeng Zhi, Tristan Laidlow, Stefan Leutenegger, and An-
drew J Davison. In-place scene labelling and understanding
with implicit scene representation. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 15838–15847, 2021. 1


	. Overview
	. Supplementary experiments
	. Experiment on BlendedMVS
	. Comparisons on segmentation models

	. Network Architecture
	. Details of Iterative Mask Lifting
	. Implementation of side-by-side comparison

