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Figure 1. The curves of training loss and test metrics display consistent trends across different VFMs and decode heads: intuitively, as

trainable parameters increase from 0.00M(Freeze) → 2.53M(Rein) → 304.24M(Full), the training loss monotonically decreases,

indicating that a greater number of trainable parameters indeed better fit the training dataset. However, the test metrics on the target

dataset initially rise and then fall, forming an inverted U-shape. This pattern suggests that the “Full” baseline overfits the training data,

leading to diminished test performance. These findings are aligned with our motivation that Leveraging Stronger pre-trained models

and Fewer trainable parameters for Superior generalizability. The blue bar charts in the figure represent the average mIoU tested on

the Cityscapes, BDD100K, and Mapillary datasets, while the yellow line denotes the training loss during fine-tuning on GTAV dataset.

1. Fewer Trainable Parameters

Classical neural network theory [10, 12] points out that

as model capacity increases, the empirical risk (or training

risk) monotonically decreases, indicating an improved fit to

training data. Conversely, the true risk (or test risk) typi-

cally exhibits a “U-shaped” curve, initially decreasing and

then increasing, a phenomenon known as overfitting. From

a modern viewpoint, the scaling law [15] suggests that on

a smaller fixed dataset, performance stops to improve as

model parameters increase, leading to overfitting.

In the majority of general tasks, the practice of early-

stopping, based on evaluation data, can partly mitigate

overfitting. However, in the field of domain generaliza-

tion, the unknown test data distribution makes acquiring a

valid evaluation dataset unavailable. Moreover, fine-tuning

datasets are often smaller compared to ImageNet [7] or

LVD-142M [24]. Hence, employing fewer trainable param-

eters emerges as a strategic approach to mitigate overfitting.

In our main paper, extensive experiments comprehen-

sively demonstrate Rein’s pivotal role in enhancing the gen-

eralization capabilities of VFMs. This enhancement may

be attributed to two factors: 1) Rein’s improved fitting ca-

pability for VFMs, ensuring better alignment with training

data; 2) Rein’s reduction of overfitting in VFMs during fine-

tuning on smaller datasets, thus exhibiting enhanced gener-

alization in testing. To delve into this, we analyze and com-

pare the average training loss in the final 1000 iterations of

the fine-tuning phase and their corresponding test metrics

for various VFMs and decode heads.

Fig. 1 showcases a consistent trend across four differ-

ent configurations. As trainable parameters increase from

0.00M(Freeze) → 2.53M(Rein) → 304.24M(Full),
the training loss monotonically decreases. However, the test

metrics on the target dataset peak with Rein, which employs

2.53 million parameters and incurs a sub-optimal training

loss. In contrast, the “Full” baseline, despite recording the

lowest training loss, only achieves sub-optimal test perfor-

mance, a clear indicator of overfitting when compared to

other setups. This observation aligns with the conclusions

in [10, 15], supporting ours observation that leveraging

Stronger pre-trained models and Fewer trainable pa-

rameters can lead to Superior generalizability.

Source Domain Cityscapes mIoU

GTAV 66.4

+Synthia 68.1

+UrbanSyn 78.4

+1/16 of Cityscapes Training set 82.5

Table 1. Results on Cityscapes validation set.

2. Value of synthetic data

As Tab. 1 illustrates, trained on synthetic Urban-

Syn [11]+GTA+Synthia datasets, Rein achieved a 78.4%

mIoU on the Cityscapes validation set. Further improve-

ment is possible with additional synthetic data and higher-

quality images generated by diffusion models, like [1]. This

result can also be a valuable pre-trained weight for data-

efficient training, reaching an 82.5% mIoU with 1/16 of



Rank r 4 8 16 32 64

Params 2.67M 2.77M 2.99M 3.42M 4.28M

EVA02

(Large)

[8]

Citys 62.6 63.5 65.3 63.8 63.4

BDD 58.5 58.9 60.5 60.5 60.2

Map 63.7 63.8 64.9 64.5 64.3

Avg. 61.6 62.1 63.6 62.9 62.7

Table 2. Ablation study on lora dim r.

VFMs Method
Training

Time

GPU

Memory
Storage

EVA02

(Large)

Full 11.8 h 15.9 GB 1.22 GB

Rein 10.5 h 12.5 GB 1.23 GB

Table 3. Training Time, GPU Memory, and Storage.

Cityscapes training set. This is a significant performance

for semi-supervised semantic segmentation.

3. Ablation on decode head

Our experiments on Rein employ the Mask2Former [5]

decode head, which shares structures or core concepts with

numerous methods in dense prediction tasks [2, 4, 21,

23, 30]. The universality of Mask2Former highlights the

significance of our findings for a range of segmentation

tasks, including instance and panoptic segmentation. Fur-

thermore, to demonstrate Rein’s effectiveness in enhancing

backbone generalization and its robustness across various

decode heads, we conduct supplementary experiments us-

ing the popular SemFPN decode head [17], in the GTAV→

Cityscapes + BDD100K + Mapillary setting.

As shown in Table 4, Rein surpasses the “Full” and

“Freeze” baselines, employing 2.53 million trainable pa-

rameters within the backbone, while the SemFPN decode

head comprises 1.63 million parameters. Owing to the ab-

sence of object queries in SemFPN, the “linking tokens

to instance” mechanism, described in Sec.3.3, is not uti-

lized, resulting in a reduction of Rein’s trainable parameters

from 2.99 million to 2.53 million. When compared to the

complete Rein configuration using the Mask2Former, using

SemFPN achieves sub-optimal performance, evident in the

64.3% mIoU reported in Table 2 and 62.1% mIoU in Ta-

ble 9, both implemented with DINOv2-Large. As shown

in Table 5, the Mask2Former brings the 11.7% mIoU for

ResNet101.These findings guide our decision to focus on

experiments involving Mask2Former in the main paper.

4. Ablation on EVA02

Study on rank r As shown in Table 2, with EVA02 as the

backbone, the optimal results are observed at r = 16.

Speed, memory, and storage. As shown in Table 3, com-

pared to “Full” baseline, proposed Rein improves training

speed and reduces GPU memory usage.

Backbone
Fine-tune

Method

Trainable

Params∗
mIoU

Citys BDD Map Avg.

EVA02 [8, 9]

(Large)

Full 304.24M 58.5 56.9 62.0 59.1

Freeze 0.00M 54.1 51.2 54.3 53.2

Rein 2.53M 61.4 58.5 62.0 60.7

DINOv2 [24]

(Large)

Full 304.20M 61.2 55.9 62.5 59.9

Freeze 0.00M 58.9 56.4 60.3 58.5

Rein 2.53M 63.6 59.0 63.7 62.1

Table 4. Performance Comparison with the proposed Rein with

SemFPN [17] as Backbones under the GTAV → Cityscapes

(Citys) + BDD100K (BDD) + Mapillary (Map) generalization set-

ting. Models are fine-tuned on GTAV and tested on Cityscapes,

BDD100K and Mapillary. The best results are highlighted. ∗ de-

notes trainable parameters in backbones.

Backbone Decoder Tune mIoU

ResNet101 [20] DeeplabV3plus Full 34.4

ResNet101 Mask2Former Full 46.1

DINOv2 Mask2Former Full 61.7

DINOv2 Mask2Former Ours 64.3

Table 5. Results on GTAV→ Citys+BDD+Map. Metrics for first

line are from Wildnet.

Methods Publication
mIoU

Citys BDD Map Avg.

RobustNet [6] CVPR 21 37.7 34.1 38.5 36.8

PintheMem [16] CVPR 22 44.5 38.1 42.7 41.8

SAN-SAW [25] CVPR 22 42.1 37.7 42.9 40.9

WildNet [20] CVPR 22 43.7 39.9 43.3 42.3

DIGA [29] CVPR 23 46.4 33.9 43.5 41.3

SPC [14] CVPR 23 46.4 43.2 48.2 45.9

EVA02 - Frozen [8, 9] arXiV 23 55.8 55.1 59.1 56.7

EVA02 + Rein - 63.5 60.7 63.9 62.7

DINOv2 - Frozen [24] arXiV 23 64.8 60.2 65.2 63.4

DINOv2 + Rein - 68.1 60.5 67.1 65.2

Table 6. Performance Comparison of the proposed Rein against

other DGSS methods under GTAV + Synthia → Cityscapes

(Citys) + BDD100K (BDD) +Mapillary (Map) generalization.

5. Multi-source generalization.

In this part, we compare Rein against other DGSS meth-

ods under GTAV + Synthia → Citys + BDD + Map set-

ting, in which networks are fine-tuned using both GTAV

and Synthia datasets, and tested on Cityscapes, BDD100K,

and Mapillary. As shown in Table 6, we report the per-

formance of Rein employing two VFMs, EVA02 and DI-

NOv2. Our results demonstrate that Rein significantly sur-

passes existing DGSS methods by a large margin in average

mIoU (from 45.9% to 65.2%).

6. More details about VFMs

CLIP. In our study, we utilize the ViT-Large architecture,

setting the patch size to 16 × 16. Each layer of this ar-



chitecture outputs features with a dimensionality of 1024,

making use of the pre-trained weights from the founda-

tional work [26]. Our model undergoes a pre-training phase

through contrastive learning, employing publicly available

image-caption data. This data is compiled through a

blend of web crawling from select websites and integrat-

ing widely-used, existing image datasets. For the model’s

pre-trained weights, which have a patch size of 14× 14 and

an original pre-training image size of 224 × 224, we adopt

bilinear interpolation to upscale the positional embeddings

to a length of 1024. Moreover, trilinear interpolation is uti-

lized to enlarge the kernel size of the patch embed layer to

16 × 16. Our model comprises 24 layers, and the features

extracted from the 7th, 11th, 15th, and 23rd layers (count-

ing from the zeroth layer) are subsequently channeled into

the decoding head.

MAE. Employing the ViT-Large architecture, our model

outputs features from each layer with a dimensionality of

1024, maintaining a patch size of 16 × 16. This model

capitalizes on the pre-trained weights as delineated in the

original work [13], and it undergoes self-supervised training

using masked image modeling on ImageNet-1K. The archi-

tecture is composed of 24 layers, directing features from the

7th, 11th, 15th, and 23rd layers directly into the decoding

head.

SAM. Aligning with the methodology described in the

foundational paper [18], we employ the ViT-Huge archi-

tecture as our image encoder, making use of pre-trained

weights that were trained on SA-1B [18] for a promptable

segmentation task. The patch size of this model is set to

16×16, and each layer is designed to output features with a

dimensionality of 1280, summing up to a total of 32 layers.

The positional embeddings of the model are upscaled to a

length of 1024 via bicubic interpolation. From this model,

we extract features from the 7th, 15th, 23rd, and 31st layers

and feed them into the decoder.

EVA02. In our approach, we adopt the largest scale config-

uration, EVA02-L, as our structural backbone, as suggested

in the paper [8]. This particular model configuration deter-

mines its patch size as 16, with each layer producing fea-

ture maps of 1024 dimensions, across a total of 24 layers.

EVA02 undergoes training through a combination of CLIP

and Masked Image Modeling techniques on an aggregated

dataset that includes IN-21K [7], CC12M [3], CC3M [28],

COCO [22], ADE20K [31], Object365 [27], and OpenIm-

ages [19]. Mirroring the approach used in previous mod-

els, we upscale the positional embeddings to 1024 through

bilinear interpolation, and the patch embed layer’s convo-

lutional kernel size is augmented to 16 × 16 via bicubic

interpolation. Features from the 7th, 11th, 15th, and 23rd

layers are then processed through the decode head.

DINOv2. Our choice of backbone for this study is

DINOv2-L, which has been distilled from DINOv2-g. As

noted in the original documentation, DINOv2-L occasion-

ally surpasses the performance of DINOv2-g [24]. Shar-

ing the same patch size, dimensionality, and layer count as

EVA02-L, we apply equivalent processing to both the po-

sitional embeddings and patch embed layer of DINOv2-L.

The features extracted from the 7th, 11th, 15th, and 23rd

layers are subsequently fed into the decode head. DINOv2

is originally pretrained in a self-supervised fashion on the

LVD-142M [24] dataset, following the procedures outlined

in its respective paper.

VPT, LoRA, and AdaptFormer. Based on extensive ex-

perimentation, we have optimized the implementation of

PEFT methods for DINOv2, utilizing configurations that

enhance performance. These methods include: 1) VPT: It

is deep and has 150 tokens. 2) LoRA: Applied to the query

and value MLP components, LoRA is configured with a

rank of 8. Additionally, it incorporates a minimal dropout

rate of 0.1%. 3) AdaptFormer: This method employs a bot-

tleneck design with a width of 64, initialized using LoRA.

Notably, it omits layer normalization.

7. Algorithm of Proposed Rein

Algorithm 1 outlines the training procedure for Rein,

wherein the weights conform to the constraints specified in

Eq. (11). In this context, the variable c represents the num-

ber of channels in the feature maps of model M, N denotes

the total number of layers within M, T indicates the overall

number of training iterations, and r is defined as a hyperpa-

rameter that is considerably smaller than c.

8. Qualitative Results and Future works

In this section, we showcase our prediction results across

various datasets, including Cityscapes, BDD100K, and

Mapillary, as depicted in Fig.2, Fig.4, and Fig.3. All mod-

els are trained on the GTAV dataset without any fine-tuning

on real-world urban-scene datasets. Our method outshines

other approaches in accuracy, especially in categories like

traffic signs, bicycles, traffic lights, sidewalks, roads, and

trucks, demonstrating high precision for both large objects

and smaller targets. Notably, despite not specifically op-

timizing for night-time segmentation, Rein’s performance

during night conditions is surprisingly high, almost akin to

daytime performance, as illustrated in Fig.2.

With the rapid development of generative models re-

search, we anticipate that our work could leverage high-

quality generated samples to approach the performance of

models trained with supervision on real datasets. Further-

more, we are prepared to investigate how VFMs can en-

hance the performance of semantic segmentation models

trained on real datasets under various adverse weather con-

ditions or on special road types. Finally, further exploration

is necessary to investigate how Rein can be extended to



Algorithm 1: Training process of Rein.

Input: A sequence of input data and corresponding labels

{(xi, yi) | t ∈ N, 1 ≤ i ≤ Nd}; Pre-trained

Vision Foundation ModelM, consisting of a

patch embed layer Lemb, and layers

L1, L2, . . . , LN ; a decode headH; and a

proposed module ReinR. The module Rein

comprises the following matrices and vectors,

initialized as specified:

Ai ∈ R
m×r, uniformly initialized,

Bi ∈ R
r×c, uniformly initialized,

WTi
∈ R

c×c, uniformly initialized,

Wfi ∈ R
c×c, initialized to zero,

WQi
∈ R

c×c′ , uniformly initialized,

bTi
∈ R

c, initialized to zero,

bfi ∈ R
c, initialized to zero,

bQi
∈ R

c′ , initialized to zero,

for each i ∈ N, 1 ≤ i ≤ N . Additionally,

WQ ∈ R
3c′×c′ is uniformly initialized, and

bQ ∈ R
c′ is initialized to zero.

Output: The optimizedH andR.

for t← 1 to T do

Get batch data:(x, y)
f0 = Lemb(x)
for i← 1 to N do

fi = Li(fi−1)
Ti = Ai ×Bi

Si = Softmax(
fi×T T

i√
c

)

∆f̄i = Si(:, 2 : m)× [Ti(2 : m)×WTi
+ bTi

]
∆fi = (∆f̄i + fi)×Wfi + bfi
Qi = Ti ×WQi

+ bQi

fi = fi +∆fi

Ft ⊆ {f0, f1, . . . , fN}
Calculate Qmax and Qavg by Eq. (9)

Q = Concat([Qmax, Qavg, QN ])×WQ + bQ
ȳt = H(Ft, Q)
OptimizeH andR by Loss(ȳ, y)

tasks such as instance segmentation, panoptic segmentation,

open-vocabulary segmentation, and even object detection.



Input RobustNet GTR Ours GTWildNet

Figure 2. Prediction results of DINOv2+Rein on the BDD100K validation set. The model is fine-tuned exclusively on the GTAV dataset,

without access to any real-world urban-scene datasets.



Input RobustNet GTR Ours GTWildNet

Figure 3. Prediction results of DINOv2+Rein on the Cityscapes validation set. The model is fine-tuned exclusively on the GTAV dataset,

without access to any real-world urban-scene datasets.



Input RobustNet GTR Ours GTWildNet

Figure 4. Prediction results of DINOv2+Rein on the Mapillary validation set. The model is fine-tuned exclusively on the GTAV dataset,

without access to any real-world urban-scene datasets.
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