
Density-Adaptive Model Based on Motif Matrix
for Multi-Agent Trajectory Prediction

Supplementary Material

7. CVAE Structure

To enhance the accuracy and generalization ability of our
proposed blocks, we employ the CVAE framework for op-
timization.

Prior & Encoder. The encoding of local agent trajecto-
ries and global trajectory information is crucial for our pro-
posed blocks, and we achieve this by first using an MLP to
embed the original trajectory and then utilizing an LSTM
to extract the original trajectory feature of each agent in Eq
(9). Notably, the MLP and LSTM used for extracting φi

are shared among all agents. We then extract the global tra-
jectory feature φG using the PointNet backbone structure
followed by an MLP, as shown in Eq. (10)

φi = LSTM [MLP (Xi)] , (9)
φG = MLP [PointNet (X1; · · · ;XN )] . (10)

The Gaussian parameters µθ, σθ can be derived through
the prior network in Eq.(1), with feature os lane φL and
φGAT serving as input feature vectors, that is

µθ, σθ = MLPθ (φi;φL;φGAT ) .

Note that φL is extracted using the same structure as Eq.(9).

Posterior & Decoder. The decoder network uses an
LSTM network to iteratively predict the future position of
each time step, as shown below:

ρti = MLPemb

(
φi, φL, φGAT ,Φi, pti

)
,

ht+1
i = LSTM

(
ρti, φL;φGAT ; Φi, h

t
i

)
,

pt+1
i = MLPdec

(
ht+1
i

)
.

Here, pti represents the predicted future trajectory of each
agent; ρt∗ and ht

∗ are the process vector for embedding and
hidden states. For the approximated posterior pτ in Eq.(??),
we use the same structure as the prior network. However,
the ground truth of the future trajectory Yi is passed in the
posterior network during the training phase. On the other
hand, Yi is not available in the inference phase. Specifically:

µp, σp = MLPp (Yi;φi;φL;φGAT ) ,

Evidence of Lower bound We train our model by opti-
mizing the negative evidence lower bound (ELBO) objec-
tive, which involves maximizing the log-likelihood of the
training data while minimizing the Kullback-Leibler (KL)
divergence between the approximate posterior distribution
pτ in Eq. (1) and the prior distribution pθ. Specifically, we
maximize the objective function:

LELBO = −Eτ {log [p (Y |Φ, X, Z)]}
+ KL [p (Φ|Y,X,Z) ∥p (Φ|X,Z)] .

Here p (Φ|Y,X,Z) is pτ as mentioned, we use a neural net-
work to approximate the posterior distribution, where the
latent codes Φ are inferred from the future trajectories Y of
all agents. Similarly, Y can be modeled by Φ using pD.

8. Graph Attention Network
We extract the node feature Φsi and the edge feature Φt

from ASI and ATI, respectively. These features are then
used to construct a bidirectional fully-connected GNN that
attentively models the interaction between the ego vehicle
and its neighboring vehicles. We utilize GAT [47] as our
graph convolutional operator to attentively fuse multi-agent
interactions as follows

v
(m+1)
i = λ

(m)
i,i · v

(m)
i +

∑
j∈Ni

λ
(m)
i,j · v

(m)
j , (11)

where v∗ is the node feature of agent i at m-th layer of
GNN. Unlike other graph convolution operators, GAT is
specifically designed to fuse multi-agent interactions atten-
tively by balancing the tradeoff between local and global
interactions.Therefore, the initial node feature v

(0)
i consists

of three parts as follows

v
(0)
i = (Xi ;φi ; Φsi) .

In Eq.(11), the set of neighbors when agent i is given is
denoted as Ni = N \{i}. The final feature v

(f)
i of each

node can be expressed as

v
(f)
i = LN

{
FC
[
v
(G)
i

]}
,

where G is the fine layer of each agent i. The feature of
edges e∗ is computed in λ, where both λ

(m)
i,i and λ

(m)
i,j in

Eq.(11) are attention coefficients, there is

λ
(m)
i,j =

exp {LeakyReLU [a′ (Wvi;Wvj ;Wei,j)]}∑
k∈Ni∪{i} exp {LeakyReLU [a′ (Wvi;Wvk;Wei,k)]}

.



the k ∈ Ni∪{i} in the above equation represents the neigh-
bor information of the node, followed by i to calculate the
attention score and consider its own information. We use a′

as a learnable parameter for an inner product mapping. The
feature of an edge from node i to j is denoted as

ei,j = (
T∑

t=t1

ptj − pti; Φ
i,j
ti ),

where i, j in superscript is index of row and column. The di-
mension of the attention coefficients is satisfied dim(a′) =
2 dim(vi) + dim(ei,j). Lastly, we obtain the final feature
of GAT, denoted as φGAT, by aggregating the node features
using the operation

φGAT = LN

(∑
i∈N

vi

)
.

Utilizing GAT allows us to extract deeper spatial and tem-
poral features of the interaction between agents.

9. Fundamental Information
9.1. Dataset

We evaluate our method using two real-world datasets,
nuScenes [6] and Argoverse [9], which developed by Mo-
tional are publicly available and large-scale, catering to au-
tonomous driving research. They offer 2D or 3D annota-
tions of road agents, track IDs and high-definition map data.

nuScenes The dataset offers high-definition maps and tra-
jectory data from 1,000 driving scenes in Boston and Sin-
gapore, areas noted for dense traffic and complex driving
challenges. It comprises 245,414 trajectory instances, each
a sequence of 2D coordinates over 8 seconds, sampled at
2Hz. The nuScenes benchmark requires predicting a target
agent’s 6-second future trajectory from a 2-second histori-
cal trajectory. The comprehensive dataset features approxi-
mately 1.4 million camera images, 390,000 LIDAR sweeps,
1.4 million RADAR sweeps, and 1.4 million object bound-
ing boxes across 40,000 keyframes.

Argoverse The dataset facilitates research in 3D track-
ing and motion forecasting for autonomous vehicles. Orig-
inating from select areas in Miami and Pittsburgh, it in-
cludes 113 scenes with 3D tracking annotations, featuring
324,557 significant vehicle trajectories derived from over
1,000 hours of driving. The forecasting component of Argo-
verse provides agent trajectories and high-definition maps,
requiring the prediction of a target vehicle’s future trajec-
tory for the next 3 seconds, based on its past trajectory over
two seconds, sampled at 10Hz. The dataset encompasses

333K real-world driving sequences, primarily at intersec-
tions or within dense traffic, each focusing on one target
vehicle for trajectory prediction.

9.2. Experiment Detail

In this model, we set all embedding dimensions to 32 (in-
cluding trajectory encoder and motif encoder). We report
the results after 100-epoch training on 8 NVIDIA Tesla K80
GPUs. In this section, we present a selection of parame-
ters utilized in the Spatial-Temporal Motif Matrix (STMM),
Adaptive Spatial Interaction, Adaptive Temporal Interac-
tion, and Graph Attention Network (GAT).

Details in STMM. As depicted in Figure 3 , the motif
matrix is initially computed for each time slice by lever-
aging the historical trajectories of the ego vehicle and its
neighboring vehicles. Subsequently, the motif matrix in the
spatial dimension is obtained using the influence radius r
chosen from the set {10, 20, 30, 40, 50}. With a sampling
frequency of 2Hz and a historical trajectory duration of 2
seconds, the temporal dimension has a total length of 4.
Consequently, a total of 20 motif matrices are obtained by
multiplying the dimensions in the temporal and spatial do-
mains, resulting in 4× 5.

Details in ASI. Along the temporal dimension, the 20 de-
coupled spatial-temporal motif matrices were summed up.
Subsequently, each resulting summed motif matrix under-
goes min-max normalization and is fed into an SPP-Net
with 5 max-pooling scales (16 × 16, 8 × 8, 4 × 4, 2 ×
2, 1 × 1). Furthermore, motif matrix features were ex-
tracted using one fully connected (FC) layer and one layer
normalization (LN) layer, converting the 341-dimensional
motif features into fixed 64-dimensional features. Impor-
tantly, if the size of the motif matrix was smaller than the
max-pooling kernel in the SPP-Net, a 2x upsampling oper-
ation was employed to expand the dimensions. Using the
extracted 64-dimensional motif features, two separate map-
pings were performed to obtain the ’key’ and ’value’ com-
ponents. Within the key-value pairs of the 5 motif matrices,
the ’query’ is obtained by concatenating the 32-dimensional
global feature extracted by PointNet and the 32-dimensional
ego-vehicle feature, utilizing an FC layer. Subsequently,
a multi-head self-attention operation with head= 5 is em-
ployed to extract additional spatial interaction features from
the attention mechanism applied to the motif matrix.

Details in ATI. We summed up 20 decoupled spatial-
temporal motif matrices along the spatial dimension, re-
sulting in 4 motif matrices that serve as inputs to the ATI
block. Similarly to the ASI block, these 4 motif matri-
ces underwent SPP-Net, FC, and LN operations, resulting



Table 5. Ablation Study of Loss

A∗ LDIS LSEL LKLD ADE1 FDE1 ADE5 FDE5 ADE10 FDE10

A1
√

× × 2.99 6.81 2.34 5.40 1.93 4.30
A2

√ √
× 2.52 5.61 2.52 5.81 2.32 5.23

A3
√

×
√

3.42 7.98 1.77 4.00 1.29 2.65
A4

√ √ √
2.84 6.59 1.39 3.14 1.02 2.05

in a 64-dimensional motif feature. Subsequently, a fixed
256-dimensional feature for all agents was extracted using
PointNet and concatenated with the 64-dimensional motif
feature. Afterwards, an FC layer is utilized to map this fea-
ture to the weight of the motif matrix at each time step. To
ensure that the weights sum up to 1, a softmax operation is
employed to normalize them.

Details in GAT. A three-layer Graph Attention Network
(GAT) was utilized, where the initial node features of the
GAT network for each agent comprised the x and y coor-
dinates, heading, and velocity of the agent’s original tra-
jectory points, forming a 4-dimensional vector and result-
ing in 16 dimensions. Furthermore, a 32-dimensional fea-
ture generated by the trajectory encoder, along with the 32-
dimensional features produced by the ASI block, were in-
corporated to capture the interaction between the vehicle
and motif matrix. Consequently, the total dimension of the
node features amounted to 80, obtained by summing the in-
dividual dimensions of 16, 32, and 32. In GAT, the edge
feature consists of three dimensions: the edge feature rep-
resents the weighted sum of the motif matrices generated
by the ATI block, along with the coordinate differences be-
tween the end and start points of the edge. The node features
are fixed at 80 dimensions for each layer of GAT. Follow-
ing the final GAT layer, a single FC layer and one LN layer
are employed to map the 80-dimensional feature to a more
compact 32-dimensional representation.

10. Ablation Study of Loss
In this paper, we utilize three loss as follows:

Loss = LDIS + λ1LSEL + λ2LKLD,

where parameters (λ1, λ2) is (1, 0.5) as previously men-
tioned. For estimate different effects for the performance
of the proposed DAMM model, which can understand its
function deeply in prediction task. Specifically, evaluate
the effectiveness of the loss functions. A comparison pro-
vide an understanding of their effect on the DAMM model
so that their performance in terms of accuracy, stability and
robustness can be assessed. Understand the effect of the
loss function on the behaviour of the model. Different loss
functions affect the training of the model and the resulting

output. This experiment can reveal the impact of loss func-
tions on the patterns and behaviour of model learning and
provide insight into the role and trade-offs of loss functions
in model optimisation.

The table 5 shows the specific design of three loss, and
the percent is the higher value than fundamental L2 norm
loss DIS.

Effects of DIS Loss. The existence of LDIS is justified
by its role as a fundamental loss function for quantify-
ing the disparity between predicted trajectories and ground
truth. When considering only LDIS, the model primarily
emphasizes minimizing the distance error between the pre-
dicted trajectory and the ground truth. As a result, the
model overly prioritizes trajectory accuracy and underuti-
lizes other valuable information, such as interaction be-
tween agents. The results analysis indicates elevated er-
rors in ADE and FDE compared to the baseline. Notably,
the FDE5 value stands at 5.4, representing an increase of
2.1 over the baseline value of 3.28. This outcome stems
from an excessive focus on trajectory-specific details, re-
sulting in less accurate predictions in complex traffic sce-
narios and potential limitations in generating diverse and
long-term trajectories.

Effects of SEL Loss. In this analysis, we specifically ex-
amine experiments A2 and A3 to investigate the impact of
LSEL. In experiment A2, we employ a binary cross-entropy
operation to assist the DAMM model in capturing selected
features and incorporating selection behavior during trajec-
tory prediction. This approach leads to the generation of
more diverse trajectories, improving the prediction results,
increasing accuracy, and enabling increased diversity. Re-
markably, in comparison to A1, the results indicate signif-
icant enhancements, with a specific increase of a 15.72%
improvement in ADE1. In experiment A3, where LSEL is
absent, the inclusion of LKLD allows the incorporation of
the prior distribution of latent variables in the CVAE frame-
work. This facilitates the generation of diverse trajectories
by the model. However, without the loss function related to
the selection of trajectory samples, the model may generate
trajectory samples that inadequately adapt to specific target
scenarios. As a result, the ADE10 metric shows a 2.58 de-



crease compared to the A2 experiment.

Effects of KLD Loss. The loss function LKLD employs
the Kullback-Leibler divergence operation within the CVAE
framework. In experiments A1 and A2, we exclude the
CVAE framework. LKLD enhances the generative diversity
and robustness of the model. Thus, in experiment A3, the
model achieves a balance between the accuracy and diver-
sity of trajectories, allowing for the generation of diverse
predictions. The incorporation of the prior network for tra-
jectory prediction during the inference stage in the CVAE
architecture leads to a significant rise in ADE and FDE by
24.36% and 25.93% respectively when K = 5, and 35.50%
and 38.37% when K = 10 compared to A1. However, since
the CVAE framework and KLD loss primarily enhance di-
versity, A3 is not as effective as A1 when K = 1.

Overall Loss Function. Through the simultaneous uti-
lization of three loss functions, the model achieves a com-
prehensive integration of accurate geometric shapes of tra-
jectories, selection behavior on complex roads, and diver-
sity in generated results across various scenarios. The uti-
lization of all three loss functions enables the model to col-
lectively consider these factors, leading to trajectory predic-
tion outcomes that exhibit improved accuracy, diversity, and
robustness. In comparison to the A1 experiment, all metrics
demonstrate improvements, resulting in an overall average
increase of 31.54% in ADE and 32.47% in FDE.

11. Broader Impact
Trajectory prediction plays a crucial role in various applica-
tions, such as autonomous driving and adaptive cruise con-
trol (ACC). In autonomous driving, trajectory prediction as-
sists vehicles in anticipating the movements of other vehi-
cles and pedestrians, enabling them to make informed deci-
sions and prevent collisions. Similarly, in ACC, trajectory
prediction enables the adjustment of vehicle speed and en-
sures a safe distance is maintained from other vehicles. By
considering heterogeneous traffic flow density, our method
enhances the accuracy and reliability of trajectory predic-
tions, contributing to the development of safer and more
efficient transportation systems. This technology finds ap-
plications in diverse transportation scenarios, encompass-
ing urban and suburban areas, highways, and intersections.
Moreover, it has the potential to facilitate the advancement
of autonomous vehicles, thereby enhancing mobility and
accessibility for individuals unable to drive or with limited
mobility.

12. Limitation
This paper proposes the use of the motif matrix to predict
the trajectory and direction of the agent, facilitating the ex-

traction of significant dynamic features through the analysis
of their variations. Owing to its complexity, it necessitates
a substantial investment of time and computing resources.
In this model, we select 3-node subgraphs by counting the
number of triangles. More complex subgraphs, involving
4 or more nodes, have the potential to capture interactions
from diverse perspectives and find application in various
scenes, which can be explored in future research.

13. Visualization
Due to space constraints, the number of visualized predic-
tion results provided in the main text is limited. Further-
more, we present additional visualized prediction results for
various scenarios with trajectory counts K of 1, 5 and 10.
We categorize the scenes into four parts based on density
and lane difficulty: density (high and low) and lanes (com-
plex and simple). “Density” refers to the density of neigh-
boring agents. The lane degree indicates the scenario, with
“complex lanes” referring to corners, intersections, and T-
junctions, while “simple lanes” typically features straight
roads with multiple lanes. In order to improve the clarity of
the visualization results, we have created a dedicated page
to present the specific outcomes. Here, we provide an ex-
planation of the figure within the caption.

In conclusion, considering various combinations of sce-
narios and adjusting the number of generated trajectories
leads to obtaining more diverse, accurate, and comprehen-
sive vehicle trajectory prediction results. By increasing the
number of trajectories, prediction diversity and realism are
enhanced, while analyzing different scenarios aids in adapt-
ing to the diversity and complexity of real-world traffic en-
vironments. These advantages contribute to enhancing the
performance and applicability of the model.



• K = 1

Figure 9. High density scenarios generated with K = 1. Each row depicts the predicted trajectory of the target agent (indicated by the light
blue box) based on its history trajectories and neighboring agents (in the gray box). The predicted future trajectories are shown in various
cases, with start points in blue and end points in red. The ground truth trajectory is represented in black for clarity. In scenarios with a high
density of neighboring agents, generating a single trajectory can provide a fundamental understanding of the primary behavioral patterns,
enabling a quick prediction of the overall trend and motion direction of the agents, including behaviors such as following and overtaking.



Figure 10. Low density scenarios generated with K = 1. Each row depicts the predicted trajectory of the target agent (indicated by the
light blue box) based on its history trajectories and neighboring agents (in the gray box). The predicted future trajectories are shown in
various cases, with start points in blue and end points in red. The ground truth trajectory is represented in black for clarity. In sparse traffic
environments, generating a single trajectory helps understand the agent’s own motion patterns and path selection. With a lower density of
neighbors, the potential for further interaction decreases, leading to increased accuracy in the generated trajectories.



Figure 11. Complex lanes scenarios generated with K = 1. Each row depicts the predicted trajectory of the target agent (indicated by
the light blue box) based on its history trajectories and neighboring agents (in the gray box). The predicted future trajectories are shown
in various cases, with start points in blue and end points in red. The ground truth trajectory is represented in black for clarity. In complex
lane scenarios, generating a single trajectory can initially identify major features such as lane changes, turns, and intersections, offering an
understanding of the overall trend.



Figure 12. Simple lanes scenarios generated with K = 1. Each row depicts the predicted trajectory of the target agent (indicated by the
light blue box) based on its history trajectories and neighboring agents (in the gray box). The predicted future trajectories are shown in
various cases, with start points in blue and end points in red. The ground truth trajectory is represented in black for clarity. In simple
lane scenarios, generating a single trajectory can encompass most of the behavioral patterns, offering insights into the fundamental path
selection and speed adjustment of the agents.



• K = 5

Figure 13. High density scenarios generated with K = 5. Each row depicts the predicted trajectory of the target agent (indicated by the
light blue box) based on its history trajectories and neighboring agents (in the gray box). The predicted future trajectories are shown in
various cases, with start points in blue and end points in red. The ground truth trajectory is represented in black for clarity. Increasing
the number of trajectories to five enables a better capture of the diverse interaction behaviors among neighboring agents in high-density
scenarios. This facilitates a more comprehensive observation, capturing variations in behavior patterns like following and overtaking,
consequently enhancing the diversity and authenticity of predictions. Partial overlaps indicate shared locations among individual segments.



Figure 14. Low density scenarios generated with K = 5. Each row depicts the predicted trajectory of the target agent (indicated by the
light blue box) based on its history trajectories and neighboring agents (in the gray box). The predicted future trajectories are shown in
various cases, with start points in blue and end points in red. The ground truth trajectory is represented in black for clarity. Increasing the
number of trajectories to five better illustrates the diversity of the agents’ behaviors, encompassing variations in speed, path selection, and
other aspects. This enhances the realism and accuracy of the prediction results, particularly in scenarios with lower neighbor density.



Figure 15. Complex lanes scenarios generated with K = 5. Each row depicts the predicted trajectory of the target agent (indicated by
the light blue box) based on its history trajectories and neighboring agents (in the gray box). The predicted future trajectories are shown
in various cases, with start points in blue and end points in red. The ground truth trajectory is represented in black for clarity. Generating
five trajectories allows for a comprehensive capture of the adaptability and decision-making ability of agents in complex scenarios. The
observation of more complex traffic markings and interactions between agents enhances the diversity and authenticity of predictions.



Figure 16. Simple lanes scenarios generated with K = 5. Each row depicts the predicted trajectory of the target agent (indicated by the
light blue box) based on its history trajectories and neighboring agents (in the gray box). The predicted future trajectories are shown in
various cases, with start points in blue and end points in red. The ground truth trajectory is represented in black for clarity. Increasing the
number of trajectories to five better showcases the diverse behaviors of agents in simple lane scenarios, capturing a wider range of speed
variations, fine-tuning, and slight changes in path selection.



• K = 10

Figure 17. High density scenarios generated with K = 10. Each row depicts the predicted trajectory of the target agent (indicated by the
light blue box) based on its history trajectories and neighboring agents (in the gray box). The predicted future trajectories are shown in
various cases, with start points in blue and end points in red. The ground truth trajectory is represented in black for clarity. Increasing the
number of trajectories to ten further comprehensively reflects the diversity of complex interactive behaviors among neighboring agents.
This leads to more accurate and comprehensive prediction results, better simulating the complex interactions between agents in real-world
scenarios.



Figure 18. Low density scenarios generated with K = 10. Each row depicts the predicted trajectory of the target agent (indicated by the
light blue box) based on its history trajectories and neighboring agents (in the gray box). The predicted future trajectories are shown in
various cases, with start points in blue and end points in red. The ground truth trajectory is represented in black for clarity. Increasing the
number of trajectories to ten further enhances the observation of diversity in agents’ own behaviors. This results in more comprehensive
prediction results, encompassing variations in their speed, acceleration, path selection, and other aspects.



Figure 19. Complex lanes scenarios generated with K = 10. Each row depicts the predicted trajectory of the target agent (indicated by
the light blue box) based on its history trajectories and neighboring agents (in the gray box). The predicted future trajectories are shown
in various cases, with start points in blue and end points in red. The ground truth trajectory is represented in black for clarity. Increasing
the number of trajectories to ten allows for a more comprehensive consideration of the diverse behaviors and decision-making of agents in
complex lane scenarios. This results in more reliable and comprehensive prediction results, better simulating complex traffic scenarios in
real-world environments.



Figure 20. Simple lanes scenarios generated with K = 10. Each row depicts the predicted trajectory of the target agent (indicated by the
light blue box) based on its history trajectories and neighboring agents (in the gray box). The predicted future trajectories are shown in
various cases, with start points in blue and end points in red. The ground truth trajectory is represented in black for clarity. Increasing the
number of trajectories to ten enables a more comprehensive consideration of the diverse behaviors of agents in simple lane scenarios. This
provides more accurate prediction results and, by learning from previous processes, can simulate trajectory movements under upcoming
road changes, thereby facilitating further decision-making.
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