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FoundationPose: Unified 6D Pose Estimation and Tracking of Novel Objects

Supplementary Material

5.1. Performance on BOP Leaderboard896

Fig. 8 presents our results on the BOP challenge of “6D lo-897
calization of unseen objects”.2 Our FoundationPose is #1 on898
the leaderboard. This corresponds to one of the four tasks899
considered in this work: model-based pose estimation for900
novel objects. We use the 2D detection from CNOS [45],901
which is the default provided by the BOP challenge.902

5.2. Implementation Details903

During training, we first pretrain the neural object field,904
pose refine network, and pose ranking network separately.905
We then perform end-to-end fine-tuning for another 5906
epochs, while freezing the weights of the neural object field907
to only provide rendering on-the-fly. The whole training908
process is conducted over synthetic data which takes about909
a week on 4 NVIDIA V100 GPUs. At test time, the model910
is directly applied to the real world data and runs on one911

2https://bop.felk.cvut.cz/leaderboards/pose-estimation-unseen-bop23/
core-datasets/

NVIDIA RTX 3090 GPU. Under the few-shot setup, ren- 912
dering is obtained from the neural object field. Under the 913
model-based setup, rendering is obtained via conventional 914
graphics pipeline [32]. 915

Neural Object Field. We normalize the object into the 916
neural volume bound of [−1, 1]. The geometry network Ω 917
consists of two-layer MLP with hidden dimension 64 and 918
ReLU activation except for the last layer. The intermedi- 919
ate geometric feature fΩ(·) has dimension 16. The appear- 920
ance network Φ consists of three-layer MLP with hidden 921
dimension 64 and ReLU activation except for the last layer, 922
where we apply sigmoid activation to map the color pre- 923
diction to [0, 1]. We implement the multi-resolution hash 924
encoding [43] in CUDA and simplify to 4 levels, with num- 925
ber of feature vectors from 16 to 128. Each level’s fea- 926
ture dimension is set to 2. The hash table size is set to 927
222. In each iteration the ray batch size is 2048. The 928
truncation distance λ is set to 1 cm. In the training loss, 929
we = 1, ws = 1000, wc = 100. Training takes about 2k 930
steps which is often within seconds. 931
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Figure 8. Screenshot on BOP leaderboard. At the time of submission, our approach outperforms the previous best method “PoMZ” (not yet published) by a
considerable margin of 0.03 on ARCore, setting a new benchmark record on the leaderboard.
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Pose Hypothesis Generation. For global pose initializa-932
tion, Ns = 42, Ni = 12. To train the refinement network,933
the pose is randomly perturbed by adding translation noise934
under the magnitude of 0.02m, 0.02m, 0.05m for XYZ axis935
respectively and rotation under the magnitude of 20◦, where936
the direction is randomized. Both the rendering and input937
observation are cropped based on the perturbed pose and re-938
sized into 160×160 before sending to the network. In the939
training loss (Eq. 10), w1 and w2 are both set to 1. The940
individual training stage takes 50 epochs. The refinement941
iteration is set to 1 for training efficiency, At test time, it is942
set to 5 for pose estimation and 1 for tracking. The com-943
plete network architecture of the pose refinement module944
can be found in the main paper (Fig. 2), where the network945
architecture used for image feature embedding is illustrated946
in Fig. 9. In the transformer encoder, the embedding dimen-947
sion is 512, number of heads is 4, feed-forward dimension948
is 512.949
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Figure 9. Network architecture for image feature embedding used in pose
refinement and selection networks. The ResBlock is from ResNet-34 [16].

Pose Selection. The individual training for the selection950
network takes 25 epochs, where we perform the similar951
pose perturbation to refinement network, and the number of952
pose hypotheses K = 5. During the end-to-end fine-tuning,953
the pose hypotheses come from the output of the refinement954
network. In the training loss (Eq. 11), α is set to 0.1. The955
valid positive sample’s rotation threshold d is set to 10◦.956
The complete network architecture of the pose refinement957
module can be found in the main paper (Fig. 2), where the958
network architecture used for image feature embedding is959
illustrated in Fig. 9. When performing the two-level hier-960
archical comparison, we use the same architecture for both961
self-attention modules. Concretely, the embedding dimen-962
sion is 512, number of heads is 4, feed-forward dimension963
is 512.964

Pose Tracking. Our framework can be trivially adapted to965
the pose tracking task while leveraging temporal cues. To966
do so, at each timestamp, we send the cropped current frame967

and the rendering using the previous pose to the pose refine- 968
ment module. The refined pose becomes the current pose 969
output. This operation repeats along the video sequence. 970
The first frame’s pose can be initialized by our pose estima- 971
tion mode. 972

Synthetic Data. Objaverse assets vary extremely in the 973
object size and mesh complexity. Therefore, we further 974
normalize the objects and remove the disconnected com- 975
ponents automatically based on the mesh edge connectivity 976
graph, to make the objects suitable for learning pose esti- 977
mation. To create each scene, we randomly sampled 70 to 978
90 objects and dropped them onto a platform with invisible 979
walls until the object velocities were smaller than a thresh- 980
old. We randomly scaled the objects from 5 to 30 cm and 981
sampled the size of the platform between 1 to 1.5 meter. 982
The LLM-aided texture augmentation is applied to each ob- 983
ject from Objaverse [6] with 3 to 5 different seeds for var- 984
ious styles. To produce diverse and photorealistic images, 985
we randomly created 0 to 5 lights with varied size, color, 986
intensity, temperature and exposure, and Nc = 2 cameras 987
on a hemisphere with radius ranging from 0.2 to 3.0 meter 988
above the platform. We also randomize the material prop- 989
erties, including metallicness and reflection, and textures of 990
the objects and the platform. For the environment, we cre- 991
ated a dome light with a random orientation and sampled 992
the background from 662 HDR images obtained from Poly 993
Haven [15]. In addition to RGBD rendering, we also store 994
the corresponding object segmentation, camera parameters 995
and the object poses similar to [25, 31]. In total, our dataset 996
has about 600K scenes and 1.2M images. The dataset will 997
be released on the project page upon acceptance. 998

Creating Reference Images. In the model-free few-shot 999
setup, similar to [21], on YCB-Video and LINEMOD 1000
datasets, we select a subset of reference images Sr from the 1001
training split St. To do so, we first initialize the selection set 1002
by choosing the image with the maximum number of pixels 1003
according to the mask. Next, for each of the remaining im- 1004
age, we compute its rotational geodesic distance to all the 1005
selected reference image, and choose the remaining frame 1006
based on: 1007

i∗ = argmax
i∈St,i/∈Sr

(
min
j∈Sr

D(Ri,Rj)

)
, (15) 1008

where D(·, ·) denotes the geodesic distance on SO(3). We 1009
repeat the process until enough number of reference images 1010
is obtained, which is typically set to 16 following [21]. 1011

For applications in the wild when the ground truth object 1012
pose is not readily available, we can leverage off-the-shelf 1013
SLAM algorithms [51, 56, 66] to compute the poses from 1014
the video. Please refer to our supplemental video for rele- 1015
vant results. 1016
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5.3. Limitations1017

Similar to related works [2, 18, 21, 31, 55, 71], our approach1018
focuses on 6D pose estimation and tracking, and relies on1019
external 2D detection, which is obtained from methods such1020
as CNOS [45], or Mask-RCNN [17]. We observe false or1021
missing detection frequently bottlenecks the 6D pose esti-1022
mation. In future work, an end-to-end framework for novel1023
object detection, 6D pose estimation and tracking would1024
be of interest. Additionally, another typical failure mode1025
due to a combination of multiple challenges is illustrated in1026
Fig. 10.1027

Input OnePose++ LatentFusion Ours

Observation

GT Ours
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Figure 10. Failure mode. Under the combination of multiple challenges
including texture-less, severe occlusion, and limited edge cues, our method
fails to estimate the correct orientation.
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