
GoMAvatar: Efficient Animatable Human Modeling from Monocular Video
Using Gaussians-on-Mesh

Supplementary Material

This supplementary material is organized as follows:
1. Sec. A provides the detailed derivation of Gaussians’

local-to-world transformation;
2. Sec. B details the whole inference pipeline;
3. Sec. C shows implementation details.
4. Sec. D shows additional results including the quantita-

tive results broken down per scene and additional abla-
tion studies.

5. Sec. E showcases failure cases in our approach.

A. Derivation of Gaussians’ local-to-world
transformation

As described in Sec. 3.1 and Sec. 3.2, we define the rotation
r✓,j and the scale s✓,j in the triangle’s local coordinates. In
order to render with Gaussian splatting, we transform the
local Gaussians to the world coordinates. Specifically, the
mean is transformed to the centroid of the triangle (Eq. (8))
and the covariance matrix is transformed by the local-to-
world transformation matrix Aj (Eq. (9)). We now show
the detailed derivation.

Given a face and its associated local properties f✓,j =
(r✓,j , s✓,j , c✓,j , {�j,k}3

k=1), we want to compute its Gaus-
sian in the world coordinates Gj = N (µj , ⌃j).

The Gaussian in the triangle’s local coordinate is

Ĝj = N (0, ⌃̂j), where ⌃̂j = RjSjS
T

j
RT

j
. (16)

Here, Rj and Sj are the matrix form of r✓,j and s✓,j respec-
tively. Then, we define a transformation from the triangle’s
local coordinates to world coordinates:

f(x) = Ajx + bj , (17)

where Aj 2 R3⇥3 and bj 2 R3. Therefore, the mean and
covariance of the Gaussian in the world coordinates are

µj = bj , (18)

⌃j = Aj⌃̂jA
T

j
. (19)

Local-to-world affine transformation f(x) = Ajx + bj .
The goal of the local-to-world affine transformation is to
move and reshape the Gaussian based on the location and
shape of the triangle face. The world Gaussian’s centroid
(Eq. (18)) is put at the centroid of the triangle face, i.e.,

bj =
1

3

3X

k=1

p�j,k . (20)

Here, {�j,k}3
k=1 are the three indices of the vertices on the

j-th triangle and hence {p�j,k}3
k=1 are the coordinates of

the vertices.
The matrix Aj = [aj,1, aj,2, aj,3] takes care of the world

Gaussian’s shape deformation. We use aj,k, k 2 {1, 2, 3}
to denote the three columns of matrix Aj . Our design of Aj

is inspired by the Steiner ellipse of a triangle, the unique el-
lipse that has the maximum area of any ellipse. Specifically,
we define aj,1 and aj,2 as the two semi-axes of the Steiner
ellipse:

aj,1 =
����!
bjp�j,3 cos t0 +

1p
3
������!p�j,1p�j,2 sin t0, (21)

aj,2 =
����!
bjp�j,3 cos(t0 +

⇡

2
) +

1p
3
������!p�j,1p�j,2 sin(t0 +

⇡

2
),

(22)

where

t0 =
1

2
arctan

2p
3

����!
bjp�j,3 ·������!p�j,1p�j,2

����!
bjp�j,3

2 � 1
3
������!p�j,1p�j,2

2
. (23)

The third column aj,3 is defined along the normal vector of
the triangle face:

aj,3 = ✏ · normalize(aj,1 ⇥ aj,2). (24)

We multiply the normal vector with ✏ to make sure the el-
lipsoid is thin along the surface normal. We set ✏ = 1e�3 in
our experiments.

Given the derivation above, when the local rotation r✓,j

is zero and the local scale s✓,j is one, i.e, ⌃̂j = I, the pro-
jection of the ellipsoid {x : (x�µj)T ⌃�1

j
(x�µj) = 1} on

the triangle recovers the Steiner ellipse, as shown in Fig. 3.

B. Inference Pipeline
We present our inference pipeline including the modules
and key inputs and outputs in Fig. 8.

C. Implementation Details
Architecture details. 1) GoMc

✓
in Eq. (3) is initialized

with the SMPL mesh [43] under the canonical T-pose; 2)
Shading✓ in Eq. (10) is a 4-layer MLP network with
128 channels; 3) NRDeformer✓ in Eq. (12) is a 7-layer
MLP network with 128 channels; 4) PoseRefiner✓

in Eq. (13) is a 5-layer MLP network with 256 channels.
The detailed architecture of Shading✓, NRDeformer✓

and PoseRefiner✓ are shown in Fig. 9.

Rendering (Sec. 3.2)

Non-rigid
motion
module

LBS
Gaussian splatting

Mesh rasterization

Articulation (Sec. 3.3)

Pseudo shading
module

!"!"
"⨂!!"#$

GoM#GoM$
%

(), +

Figure 8. Inference pipeline. Our inference pipeline has two stages: 1) Articulation: This stage takes the Gaussians-on-Mesh (GoM)
representation in the canonical space, denoted as GoMc

✓ , and the human pose P as input. Utilizing the non-rigid motion module and linear
blend skinning (LBS), it produces the transformed GoM representation in the observation space, referred to as GoMo. 2) Rendering: In
this stage, the transformed GoMo, along with the camera intrinsic parameters K and extrinsic parameters E, are employed as inputs. It
adopts the Gaussian splatting to generate the pseudo albedo map IGS and the subject mask M . Meanwhile, through mesh rasterization, it
produces the normal map Nmesh which is then fed into the pseudo shading module to output the pseudo shading map S. The final RGB
image I is then obtained by multiplying IGS with S.

!(#!"#$)

128

128

128

128 %

(a) Shading

{'(%&}%'() 256

256

256

256 {*%}%'()

(b) Pose refiner

+

!(,*,,-)

128

128

128

128

128

128

!(,*,,-)
(c) Non-rigid deformer

,*,,-

+ ,,./

256

128

Figure 9. Detailed architectures of (a) Shading✓ , (b) PoseRefiner✓ and (c) NRDeformer✓ .

Training details. We use Adam optimizer [32] with
�1 = 0.9 and �2 = 0.999. On ZJU-MoCap, We train
the model for 300K iterations. We set the learning rate
of PoseRefiner✓ to 5e�5. The learning rate of the
rest of the model is 5e�4. We kick off the training
of PoseRefiner✓ and NRDeformer✓ after 100K and
150K iterations respectively. For NRDeformer✓, we fol-
low HumanNeRF [70] to adopt a HanW window during
training. We set ↵lpips = 1.0 ↵M = 5.0, ↵reg = 1.0
in Eq. (14), and ↵lap = 10.0, ↵normal = 0.1, ↵color = 0.05
in Eq. (15). We subdivide the GoM after 50K iterations. On
PeopleSnapshot, we train the model for 200K iterations and
kick off the training of NRDeformer✓ after 100K itera-
tions. We subdivide GoM once after 10K iterations. We do
not refine training poses with PoseRefiner✓ following
InstantAvatar [26]. On in-the-wild Youtube videos, since
the poses are predicted and less accurate, we kick off the
training of PoseRefiner✓ at the start of the training pro-

cess while keeping all other hyperparameters the same as
ZJU-MoCap.

D. Additional Results

D.1. Quantitative Results of Per-scene Breakdown

We show the per-scene PSNR, SSIM and LPIPS* on the
ZJU-MoCap dataset in Tab. 6 and Tab. 7. The per-scene
breakdown results on PeopleSnapshot is shown in Tab. 8.

D.2. Qualitative Results on PeopleSnapshot

We conduct a qualitative comparison on PeopleSnapshot
dataset in Fig. 10. As shown below, we better capture tex-
tures better compared to InstantAvatar. Meanwhile, our ap-
proach can capture fine details in geometry, such as wrin-
kles.

PSNR " SSIM " LPIPS* # PSNR " SSIM " LPIPS* # PSNR " SSIM " LPIPS* #
Subject 377 Subject 386 Subject 387

Neural Body 29.08 0.9679 41.17 29.76 0.9647 46.96 26.84 0.9535 60.82
HumanNeRF 29.79 0.9714 28.49 32.10 0.9642 41.84 28.11 0.9625 37.46
MonoHuman 30.46 0.9781 20.91 32.99 0.9756 30.97 28.40 0.9639 35.06
GoMAvatar (Ours) 30.60 0.9768 23.91 32.97 0.9752 30.36 28.34 0.9635 36.30

Subject 392 Subject 393 Subject 394
Neural Body 29.49 0.9640 51.06 28.50 0.9591 57.07 28.65 0.9572 55.78
HumanNeRF 30.20 0.9633 40.06 28.16 0.9577 40.85 29.28 0.9557 41.97
MonoHuman 30.98 0.9711 30.80 28.54 0.9620 34.97 30.21 0.9642 32.80
GoMAvatar (Ours) 31.04 0.9708 33.25 28.80 0.9622 37.77 30.44 0.9646 33.56

Table 6. Per-scene breakdown in novel view synthesis on ZJU-MoCap dataset.

PSNR " SSIM " LPIPS* # PSNR " SSIM " LPIPS* # PSNR " SSIM " LPIPS* #
Subject 377 Subject 386 Subject 387

Neural Body 29.29 0.9693 39.40 30.71 0.9661 45.89 26.36 0.9520 62.21
HumanNeRF 29.91 0.9755 23.87 32.62 0.9672 39.36 28.01 0.9634 35.27
MonoHuman 30.77 0.9787 21.67 32.97 0.9733 32.73 27.93 0.9633 33.45
GoMAvatar (Ours) 30.68 0.9776 23.41 32.86 0.9737 32.25 28.18 0.9626 36.43

Subject 392 Subject 393 Subject 394
Neural Body 28.97 0.9615 57.03 27.82 0.9577 59.24 28.09 0.9557 59.66
HumanNeRF 30.95 0.9687 34.23 28.43 0.9609 36.26 28.52 0.9573 39.75
MonoHuman 31.24 0.9715 31.04 28.46 0.9622 34.24 28.94 0.9612 35.90
GoMAvatar (Ours) 31.44 0.9716 33.20 29.09 0.9635 36.02 29.79 0.9638 33.00

Table 7. Per-scene breakdown in novel pose synthesis on ZJU-MoCap dataset.

(d) Reference RGB (e) Predicted normals(a) Ground truth (b) InstantAvatar (c) Ours

Figure 10. Qualitative results on PeopleSnapshot dataset. On
the left side, we conduct a qualitative comparison to InstantAvatar.
We also show the geometry by rendering the surface normals on
the right side.

D.3. Sensitivity to SMPL Accuracy

Our approach takes the human poses in the input frames
as inputs. The human poses are provided in ZJU-MoCap
dataset and PeopleSnapshot dataset, while we predict the
poses with PARE [33] for in-the-wild Youtube videos.

The robustness to SMPL prediction can be seen in in-
the-wild videos. In Fig. 11(a), we show that there are errors
in pose prediction in in-the-wild videos. However, the pose
refinement improves erroneous SMPL poses (Fig. 11(b)).
The pose refinement is crucial for rendering in in-the-wild

(a) Input pose (b) Refined pose
(c) w/o

pose refiner
(d) w/

pose refiner

Figure 11. Robustness to SMPL accuracy. Our method is robust
to SMPL prediction. This can be seen in in-the-wild videos. (a)
Predicted poses have errors. (b) Pose refinement improves erro-
neous SMPL poses, which is crucial for in-the-wild videos (c, d).

videos, which can be seen in Fig. 11(c, d). Without the pose
refinement, the approach fails to render the correct shape of
the human face. This issue is solved when equipped with
the pose refinement.

In Tab. 9, we quantitatively assess sensitivity to SMPL
accuracy on ZJU-MoCap, comparing the original less-
accurate SMPL poses to refined versions from Instant-
NVR [16]. Hence, refining SMPL pose improves rendering

PSNR " SSIM " LPIPS # PSNR " SSIM " LPIPS #
m3c m4c

Anim-NeRF 29.37 0.9703 0.0168 28.37 0.9605 0.0268
InstantAvatar 29.65 0.9730 0.0192 27.97 0.9649 0.0346
GoMAvatar (Ours) 31.74 0.9793 0.0187 29.78 0.9738 0.0282

f3c f4c
Anim-NeRF 28.91 0.9743 0.0215 28.90 0.9678 0.0174
InstantAvatar 27.90 0.9722 0.0249 28.92 0.9692 0.0180
GoMAvatar (Ours) 29.83 0.9758 0.0209 31.38 0.9780 0.0174

Table 8. Per-scene breakdown in novel view synthesis on PeopleSnapshot dataset.

PSNR " SSIM " LPIPS*# CD # NC "
Original 30.37 0.9689 32.53 2.8364 0.6201
Refined 30.86 0.9709 30.91 2.3377 0.6307

Table 9. Quantitative evaluation about sensitivity to SMPL ac-
curacy. We test our approach with two versions of SMPL poses
on ZJU-MoCap dataset. “Original” refers to the poses provided in
the original ZJU-MoCap dataset, which is less accurate. “Refined”
refers to the improved version from InstantNVR [16].

Figure 12. Qualitative comparison between GoM and Gaus-
sians only.

and geometry quality, but our method will not fail without.

D.4. Ablation on Canonical Representations
In Sec.4.4, we conduct a quantitative comparison of the
GoM presentation and 3D Gaussians alone. Here, we show
the comparison to Gaussians only qualitatively in Fig. 12.
Gaussians only yield severe artifacts on the boundary while
our method attains a sharp boundary.

E. Failure Cases
We present two failure cases of our approach:
1. Our approach, along with other state-of-the-art methods

optimized on a per-scene basis, lacks the ability to hallu-
cinate unseen regions. This limitation can be observed in
the failure for Subject 386 in the ZJU-MoCap dataset, as
shown in Fig. 13(a). In subject 386, the training frames

(a) (b)

Figure 13. Failure cases.

Figure 14. Novel view synthesis on subjects in dresses.

do not cover the front view of the person. Consequently,
all methods fail to generate a valid rendering from this
unobserved perspective.

2. As we associate Gaussians with the mesh in the
Gaussians-on-Mesh representation, we sometimes can-
not handle significant topology changes. One example is
the white belt on the shorts in Subject 377 (Fig. 13(b)),
which dynamically shifts with the person’s movement.
Interestingly, when fitting clothes with different topolo-
gies from SMPL, such as dresses, our model can self-
deform to fit the shapes and yield plausible novel-view

renderings, even though the topology does not change.
This can be seen in Fig. 14. Addressing topology
changes may require a pose-dependent topology update,
which we leave to future work.

	. Introduction
	. Related Work
	. Gaussians-on-Mesh (GoM)
	. Gaussians-on-Mesh Representation
	. Rendering
	. Articulation
	. Pose Refinement
	. Training

	. Experiments
	. Experimental setup
	. Quantitative results
	. Qualitative results
	. Ablation studies

	. Conclusion
	. Derivation of Gaussians' local-to-world transformation
	. Inference Pipeline
	. Implementation Details
	. Additional Results
	. Quantitative Results of Per-scene Breakdown
	. Qualitative Results on PeopleSnapshot
	. Sensitivity to SMPL Accuracy
	. Ablation on Canonical Representations

	. Failure Cases

