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A. Method Details
In this section, we describe the details of our method and
adapted PARIS*/PARIS*-m. We will also release our code
and data to facilitate future research.

A.1. Neural Object Field

We use Neural Object Field [35] as the object representation
for our stage one reconstruction. We follow the practice of
[35] and we describe the specifics below.

Given multi-view posed RGB-D images of the object Ot

at state t, t 2 {0, 1}, we reconstruct the object in the form
of a Neural Object Field [35] (⌦t,�t

) (we omit t for sim-
plicity in the following). The geometry network ⌦ : x 7! s
maps spatial point x 2 R3 to its truncated signed distance
s = clip(d/⌧d,�1, 1), where ⌧d = 0.03 is the truncation
distance, d is the signed distance to the object surface. The
appearance network � : (x,d) 7! c maps point x 2 R3

and view direction d 2 S2 to RGB color C 2 R3.
We supervise the Neural Object Field at 3D points {xi =

o+ tid} sampled along camera rays r(t) = o+ td, where
o 2 R3 denotes ray origin, and d 2 S2 denotes ray direc-
tion.

The expected color C(r) is approximated by a weighted
average of point colors around the object surface:

C(r) = Exi2Xsurf [w(xi)�(xi,d)] , (17)
Xsurf = {x||⌦(x)| < 1}, (18)

w(xi) =
1

(1 + e�↵⌦(xi))(1 + e↵⌦(xi))
, (19)

where Xsurf denotes the set of points within truncation
distance ⌧d to the object surface, w(xi) is a bell-shaped
function that peaks at object surface, ↵ = 5 is a hyper-
parameter that controls its sharpness.

Let z(r), Ĉ(r) be the groundtruth depth and color at
training ray r 2 R, d(x) be x’s distance to ray origin o,
⌦̂(x) be the groundtruth untruncated SDF. We supervise
(⌦,�) with color rendering loss Lrender (denoted Lc in the
main paper, changed to avoid confusion with lc in consis-
tency loss):

Lrender = Er2R

h
||C(r)� Ĉ(r)||22

i
, (20)

And SDF loss LSDF:

LSDF = �eLe + �surfLsurf, (21)
Le = Ex2Xe [|⌦(x)� 1|] , (22)

Lsurf = Ex2Xsurf

h
(⌦(x) · ⌧d � (z(r)� d(x))))2

i
, (23)

where Xe = {x|⌦̂(x) > ⌧d} denotes the empty space in
front of the object surface, ⌦(x) · ⌧d is the predicted SDF,
(z(r)� d(x)) approximates groundtruth SDF for points in
the near-surface region Xsurf. For more stable training, we
substitute predicted signed distance ⌦(xi) in Eq. (19) with
approximated groundtruth signed distance (z(r)� d(x)).

The total loss for training Neural Object Field in the first
stage is

L = �renderLrender + �SDFLSDF (24)
We set �render = 10, �SDF = 1, �e = 1 ,�surf = 6000 ,

following [35]. We also build an Octree from depth inputs
to speed up ray sampling following their practice.

A.2. Architecture Details
Neural Object Field (⌦,�) is implemented with multi-
resolution hash encoding [24] of the input position x, spher-
ical embedding of the input view direction d, followed by a
2-layer MLP for TSDF and a 3-layer MLP for color.

The segmentation field P(x, i) is implemented with a
dense voxel feature grid followed by a 3-layer MLP. The
raw P -dim output is activated with softmax to get a prob-
ability distribution over P parts. The dense voxel feature
grid has size 50⇥ 50⇥ 50 and feature dimension C = 20.

The hidden dimension of all MLPs is set to 64.

A.3. Training Details

Generating Mesh, SDF, and Occupancy Field We extract
meshes from the TSDF field ⌦ using marching cubes [18]
with resolution 0.003. We compute the smoothed occu-
pancy value from SDF with s = 0.01 in Eq. (1). For com-
putation efficiency, we pre-computed SDF values at a grid
of resolution 0.01, and use trilinear interpolation of the pre-
computed values for arbitrary query x.
Handling Visibility We set ✏ = 0.03 in Eq. (15) for vis-
ibility computation, and discount invisible corresponding
points in the consistency loss with wvis = 0.5.
Training Parameters We set ↵ = 5 in Eq. (8) while com-
puting point weights for near-surface points in consistency
loss, consistent with the setting of ↵ Eq. (19) in the first
stage rendering loss. We set �s = 10, �c = 0.1, �o = 5 in
consistency loss Eq. (7), �cns = 1, �match = 500, �coll = 50

in total training loss Eq. (16).
We implement our method with PyTorch and use Adam

optimizer with an initial learning rate of 0.01 and exponen-
tial decay with factor 0.1. Each stage of the reconstruction
optimizes for 2000 steps. We also enable occupancy con-
sistency loss and collision loss (both aim at better part seg-



mentation and make more sense when joint parameters are
roughly optimized) after 500 optimization steps in the sec-
ond stage.
Computation Time The optimization part of our method
runs for 40 minutes on an NVIDIA Tesla V100 GPU. Pre-
computing SDF takes another 20 minutes, which we plan to
optimize with parallel computation.

A.4. Inference Details
To extract mesh for part i, we run marching cubes on the
reconstructed SDF field ⌦̂(x), during which we additionally
query the part index of the grid points and set SDF values
of points not belonging to part i to 1 (out of the part).

Given the raw optimized 6-DoF rigid transforma-
tion (R, t), we classify the joint as prismatic when
| angle(R0

i )| < ⌧r, where the threshold ⌧r = 10
�. For pris-

matic joints, we take the translation component t for axis
and part motion computation. For revolute joints, we com-
pute axis direction u and rotation angle ✓ from the rotation
component R, and compute axis position p as the solution
of argminp ||(I �R)p� t||22.

A.5. PARIS*/PARIS*-m Implementation Details
We augment original PARIS with depth supervision follow-
ing the practice of [2], where the following depth rendering
loss is added to the optimization.

Ld = ||D̂(r)�Dgt||
2
2, (25)

D̂(r) =
NX

i=1

Ti(1� exp(��(ti)�i))ti, (26)

Ti = exp(�

i�1X

j=1

�(tj)�j), (27)

�j = tj+1 � tj (28)
We use a loss weight of �d = 0.01 since larger weights tend
to sabotage the optimization and smaller weights have very
limited impact.

The original PARIS composites static field F
S and mo-

bile field F
M , each representing one object part. It also

optimizes the axis and state change of the joint connecting
the parts. For objects with P parts, where P > 2, we extend
PARIS to optimize P fields, FS ,FM0 ,FM1 , . . . ,FMP�2 ,
as well as P � 1 rigid transformations for each movable
part. The per-point color composition in Eq. 1 of PARIS is
directly extended to include P terms, namely

Ĉ(r) =

Z hf

hn

(wS
(h) · cS(h) +

P�2X

i=0

wMi(h)cMi(h))dh.

(29)
We also closely follow PARIS’ fine-tuning procedure

and use its proposed regularization loss Lprob that encour-
ages each point to accumulate information only from one

field. Formally,

Lprob = H(PM (r)), (30)

PM (r) =
OM

(r)

OM (r) +OS(r)
, (31)

H(x) = �(x · log(x) + (1� x) · log(1� x)), (32)
where PM (r) denotes the ratio of the contribution of the

mobile field F
M to ray r, H is the binary entropy function.

For PARIS*-m, we extend Lprob to be the entropy over
the P-ary probability distribution (PS , PM0 , . . . , PMP�2).
Formally,
Lprob = H(P (r)) (33)

= �

 
PS(r) logPS(r) +

P�2X

i=0

PMi(r) logPMi(r)

!
.

(34)

B. Additional Results

B.1. Results on PARIS Two-Part Object Dataset

Being optimization-based methods, PARIS, PARIS*,
PARIS*-m, and our approach all have varying performances
across trials depending on different initialization of the
model parameters. For a comprehensive evaluation, we run
each method 10 times with different random seeds (also set
randomly) and report their mean and standard deviation in
Table 1 of the main paper. While our approach produces
quite stable results across trials, PARIS and its variations
have large performance variances. For completeness, in Ta-
ble 4 we summarize the results from the best trials of PARIS
and PARIS*, alongside the numbers reported in the original
PARIS paper, denoted PARIS† for reference. To select the
best trial, we compute the minimum value for each metric
across 10 trials, then choose the trial with the most number
of minimum metric values. When there are ties, we priori-
tize the metrics with larger variances.

For most objects, the best results from our re-run tri-
als of PARIS are comparable to the reported numbers from
PARIS†. However, achieving such results takes many trials
and drastic failure cases are not uncommon, as reflected by
the overall large average errors. For challenging instances
such as stapler, 10 trials are still insufficient to get one suc-
cessful reconstruction.

The best trials from depth-augmented PARIS* have
comparable performance to PARIS on joint-related metrics,
and overall better performance on part- and object-level
chamfer distances, showing the usefulness of depth super-
vision. Nevertheless, as suggested in Table 1 of the main
paper, the introduction of one more loss term to PARIS’ op-
timization process further destabilizes it and leads to larger
variances and average errors.



Simulation Real
FoldChair Fridge Laptop Oven Scissor Stapler USB Washer Blade Storage Fridge Storage

Axis
Ang

PARIS† [16] 0.02 0.00 0.03 0.03 0.02 0.07 0.07 0.08 0.00 0.37 1.91 3.88
PARIS [16] 0.03 0.00 0.00 0.04 0.03 42.99 0.00 0.04 0.11 0.02 1.90 14.61
PARIS* [16] 0.02 0.00 0.03 0.04 0.00 1.05 0.02 0.08 1.66 0.03 1.91 15.64

Axis
Pos

PARIS† [16] 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.02 - - 0.53 -
PARIS [16] 0.00 0.00 0.00 0.00 0.00 0.16 0.01 0.01 - - 0.54 -
PARIS* [16] 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.02 - - 0.51 -

Part
Motion

PARIS† [16] 0.00 0.00 0.03 0.00 0.00 0.00 0.03 0.08 0.06 0.00 0.77 0.31
PARIS [16] 0.04 0.00 0.05 0.04 0.03 34.81 0.03 0.18 0.27 0.30 1.48 1.16
PARIS* [16] 0.04 0.00 0.00 0.03 0.00 0.72 0.00 0.10 0.28 0.30 1.57 0.58

CD-s
PARIS† [16] 0.20 2.88 0.15 6.19 0.28 0.94 2.60 19.45 0.58 11.76 10.22 20.92
PARIS [16] 0.21 1.92 0.15 10.78 0.39 1.84 2.68 28.15 0.53 8.96 9.32 81.11
PARIS* [16] 0.21 1.73 0.15 2.73 0.23 1.39 2.47 5.24 0.62 7.68 8.87 16.86

CD-m
PARIS† [16] 0.53 1.13 0.14 0.43 0.23 0.85 0.89 0.27 5.13 20.67 67.54 101.20
PARIS [16] 0.55 1.43 0.14 7.09 0.25 2.49 0.83 0.24 7.16 83.54 77.48 143.17
PARIS* [16] 0.41 1.21 0.15 0.76 0.20 0.97 0.62 0.26 6.63 49.14 92.26 12.89

CD-w
PARIS† [16] 0.42 2.68 0.25 6.07 0.30 0.96 1.80 18.31 0.46 8.12 8.20 18.98
PARIS [16] 0.43 1.95 0.25 9.24 0.33 1.76 1.97 30.30 0.43 7.63 7.84 68.77
PARIS* [16] 0.37 1.81 0.26 2.68 0.26 1.10 1.64 4.97 0.44 7.40 6.43 15.75

Table 4. Results of the best-performing optimization trials from PARIS and PARIS* on PARIS Two-Part Dataset, where PARIS* [16] is augmented with
depth, PARIS† are numbers reported in the original PARIS paper [16] for reference. Note that Blade, Storage, and Real Storage have prismatic joints whose
Axis Position Error is undefined.

Axis Ang 0 Axis Ang 1 Axis Pos 0 Axis Pos 1 Part Motion 0 Part Motion 1 CD-s CD-m 0 CD-m 1 CD-w

Fridge-m
PARIS*-m [16] mean±std 34.52±19.1 15.91±7.0 3.60±1.6 1.63±1.3 86.21±55.2 105.86±43.6 8.52±2.0 526.20±141.6 160.86±102.2 15.00±3.5

best trial 27.30 13.89 3.22 2.27 22.62 43.18 6.74 265.46 150.20 10.45

Ours mean±std 0.16±0.0 0.10±0.0 0.01±0.0 0.00±0.0 0.11±0.0 0.13±0.0 0.61±0.0 0.40±0.0 0.52±0.0 0.89±0.0
best trial 0.11 0.10 0.01 0.00 0.08 0.13 0.61 0.41 0.52 0.89

Storage-m
PARIS*-m [16] mean±std 43.26±25.1 26.18±7.2 10.42±19.1 - 79.84±45.4 0.64±0.2 8.56±1.1 128.62* 266.71±102.7 8.66±5.4

best trial 0.38 27.54 6.50 - 47.06 0.91 9.15 128.62 216.96 21.95

Ours mean±std 0.21±0.0 0.88±0.2 0.05±0.0 - 0.13±0.0 0.00±0.0 0.85±0.0 0.21±0.0 3.46±2.8 0.99±0.0
best trial 0.20 0.76 0.05 - 0.13 0.00 0.85 0.21 0.23 0.99

Table 5. Additional result statistics on multi-part object dataset, including the average, standard deviation, and the best result across 10 trials with different
random seeds. PARIS*-m [16] is augmented with depth and extended to handle objects with more than two parts. Joint 1 of “Storage-m” is prismatic and
does not have Axis Position Error. PARIS*-m only reconstructed two non-empty parts in 9 out of 10 trials, and its CD-m 0 (chamfer distance of movable
part 0) is reported from the only trial with three reconstructed parts.

B.2. Results on Multi-Part Objects

For multi-part objects, we follow the same protocol and run
10 trials with different random seeds for both PARIS*-m
and our method. Their average, standard deviation, and best
trials are summarized in Table 5. Our method continues to
exhibit stable performance. On the other hand, PARIS*-m
struggles to deal with the increased complexity of multiple
movable parts. Even the best trials cannot successfully re-
construct both movable parts or their joint parameters.

B.3. Additional Qualitative Results

Figures 7, 8 show additional qualitative results from PARIS,
PARIS*, and our method on PARIS two-part objects. We vi-
sualize the per-part reconstructions and reconstructed joint
axes. Please refer to our supplementary video � for 360�
view of the reconstructions and motion interpolation results.

B.4. Demo Interaction with the Reconstructed
Multi-Part Storage in Simulation

Our reconstructed digital twin can be readily imported to
simulation environments and interacted with. Figure 9
shows screenshots of a demo interaction sequence we made.
Please refer to our supplementary video � for the full se-
quence. We imported our reconstruction of the multi-part
storage furniture (“Storage-m”) into Issac Gym, using both
the reconstructed meshes and the joint parameters. We gen-
erated a control sequence for a Franka Emika robotic arm
to interact with both movable parts of the reconstruction.
As illustrated by the demo, the ability to reconstruct digi-
tal twins of multi-part articulated objects enables exciting
real2sim applications.
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Figure 7. Additional visualizations of reconstruction results from PARIS, PARIS* (PARIS augmented with depth supervision), and our approach on synthetic
objects from PARIS Two-Part Object Dataset. For each method, we selected typical trials with performance closest to the average performance. Please refer
to our supplementary video � for 360� views and motion interpolation results.
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Figure 8. Additional visualizations of reconstruction results from PARIS, PARIS* (PARIS augmented with depth supervision), and our approach on the real
storage furniture from PARIS Two-Part Object Dataset. For each method, we selected a typical trial with performance closest to the average performance.
Please refer to our supplementary video � for 360� views and motion interpolation results.

(a) (b) (c) (d)

Figure 9. Screenshots from demo interaction sequence with our reconstructed storage furniture in Issac Gym. We controlled a Franka Emika robot arm to
interact with both movable parts. Please refer to our supplementary video � for the full sequence.
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