
Back to 3D: Few-Shot 3D Keypoint Detection with Back-Projected 2D Features

Supplementary Material
Fe

at
ur

e 
ba

ck
-p

ro
je

ct
io

n
+ 

ge
od

es
ic

 d
is

ta
nc

e
co

m
pu

ta
tio

n

Ke
yp

oi
nt

 c
an

di
da

te
op

tim
iz

at
io

n

So
ur

ce
 s

ha
pe

(la
be

le
d)

Te
st

 s
ha

pe
(u

nl
ab

el
ed

)

Detected 
Keypoints on 

test shape

Figure 10. Pipeline of B2-3D. Given one or a several labeled
source shapes and an unlabeled test shape, we first back-project
features for ground-truth keypoints on the source shapes and can-
didate locations sampled from the surface of the test shape. In
addition, we compute the pairwise geodesic distances between the
keypoints. With this information at hand we then employ our op-
timization module to detect the keypoints on the test shape. Intu-
itively, our optimization uses the back-projected features as first
order similarity between labeled keypoints and candidate loca-
tions, and uses pairwise geodesic distance information as second
order regularization.

7. Implementation Details
The pipeline of our method is visualized in Fig. 10. The
features and the pairwise geodesic distances of ground-truth
keypoints on the few-shot samples can be computed in ad-
vance. We use PyTorch3D [34] for the rendering of shapes,
and process the rendered views with the pre-trained vision
models. The runtime of the feature extraction thus depends
on various factors, like the number of views, the complex-
ity of the rendered mesh, the amount of points for which
we extract features and the 2D feature extractor that is used.
The feature computation normally takes between 10 to 20
seconds for one shape in our experiments on one NVIDIA
A40 GPU.

As the keypoint candidate optimization is non-linear, we
use PyTorch with gradient descent to solve the optimization
problem. We initialize the matrix S (see Sec. 3.2) with ran-
dom values from a normal distribution and apply a softmax
per row to ensure the right-stochastic character of the matrix
S at every optimization step. Using a GPU, the optimization
process (5000 steps) can be completed in about 10 seconds.
We make our code available under the following URL:
https://github.com/wimmerth/back-to-3d-
few-shot-keypoints.

7.1. Keypoint optimization hyperparameters

To further steer the optimization toward the selection of one
clear correspondence per keypoint, instead of possibly av-

eraging over multiple candidates and their features in the
optimization, we define an optional selection reward

Rselection =
∑
j

(max
i

Ŝij −
1

n

∑
i

Ŝij), (4)

and formulate an extended objective function as

L = Lfeature + αLdistance − βRselection (5)

with two weighting parameters α, β.
• The weighting-parameter α is dependent on the feature

dimensionality and magnitude. We find that setting α =
4 works well with back-projected DINO features (see
Fig. 11), but we also adjust this parameter for the vari-
ous other features used in our experiments.

• In our experiments, we find that setting β = 0 in the op-
timization and thus not taking the selection reward into
account works the best (Fig. 11), as the optimization is
less sensitive to the random initialization of the selection
matrix S without it.

• The choice of σ for Gaussian re-weighting of features
(Eq. 2) depends on the quality and scale of the given
mesh. In the best case, if we work with clean meshes,
we do not need to apply re-weighting since all points
of the shape will be (recognized as) visible from some
viewpoint. However, if this is not the case, as with some
ShapeNet meshes, we find that setting γ ∈ [0.001, 0.005]
works quite well for shapes normalized to a unit box
scale.

0 0.05 0.1
0

0.2

0.4

0.6

Distance Threshold

Io
U

α
1
2
3
4
5

0 0.05 0.1
0

0.2

0.4

0.6

Distance Threshold

Io
U

β
0
1
2

Figure 11. Influence of the weighting terms α, β in the optimiza-
tion objective on the keypoint detection results. The best weights
with DINO features were empirically found to be α = 4 and
β = 0, thus effectively removing the selection reward from the
objective.

7.2. Hungarian method baseline

An alternative baseline to nearest-neighbor matching in the
feature space is using the Hungarian method to solve the

https://github.com/wimmerth/back-to-3d-few-shot-keypoints
https://github.com/wimmerth/back-to-3d-few-shot-keypoints


linear assignment problem with the similarity of candidate
features to keypoint features as costs. We show the results
using a variant, the Jonker-Volgenant algorithm, in Tab. 1.
While this method avoids the collapse observed with simple
nearest-neighbor matching in some cases, it is not aware
of the spatial relation between the detected keypoints and
using our proposed optimization module instead improves
over the results by an average of 37%, thus strongly sup-
porting our design choice.

Table 1. Comparison of IoU scores with varying distance thresh-
olds against proposed baseline using Hungarian matching.

Dist. Threshold 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10
B2-3D (ours) 0.12 0.20 0.36 0.46 0.53 0.58 0.62 0.64 0.67 0.69 0.71
Hungarian 0.08 0.13 0.23 0.31 0.37 0.42 0.47 0.50 0.53 0.55 0.58

8. Results on real-world scans
In addition to experiments on the KeypointNet dataset, we
qualitatively evaluate our method on real-world scans from
the Objaverse dataset [15]. As there are no ground-truth
keypoint annotations given, we manually annotate key-
points on a few cars and apply B2-3D to a few unlabeled
cars. We observe that, contrary to the experiments on the
KeypointNet dataset, using texture information of the mod-
els slightly improves the results which can be explained
with the higher quality of the texture compared to ShapeNet
meshes.

Figure 12. Few-shot keypoint detection (red) on real-world scans,
given manually annotated source shapes (green).

9. Additional feature analysis and properties
9.1. Uptake of local geometry changes

We investigate the reaction of the back-projected features to
small modifications of the shape. We expect them to slightly
change for the affected regions while remaining similar for
non-affected regions. The visual results of this experiment
can be seen in Fig. 13.

If we slightly stretch the rear part of the aircraft body, we
notice that the features of the aircraft change slightly from
the point where we stretch it to the tail. This is interesting

to observe because only the fuselage was changed, while
the stabilizers in the rear remained untouched. We suspect
that the change in the relative sizes of the different parts
influences these small changes in the features.

Moving the landing gear on the top of the aircraft
changes not only the features of the landing gear, but also
those of the part of the aircraft to which it is attached. While
it could be argued that the coarse patch size of the extracted
features affects this change by ”leaking” onto the area be-
hind the landing gear, features for other regions that are
close to the landing gear did not change drastically. This
leads us to conclude that the features back-projected to the
modified shape also capture the change in semantics for the
affected part of the aircraft.

Figure 13. Change of the computed features (measured in co-
sine similarity) when applying small modifications (indicated with
black arrows) to the original shape (left). The back-projected
DINO features seem to generally react well by changing in the
affected areas while staying the same in unaffected areas.

9.2. Semantic stability with varying shapes

In our experiments with axiomatic shape descriptors, we hy-
pothesize that pure geometry-based descriptors are not con-
sistent and informative enough to provide similar features
for similar points on shapes of the same object class that
have a different geometry. To test this conjecture, we con-
duct another small qualitative experiment. We extract fea-
tures for each shape and apply a PCA to all points together
for visualization, as described in Section 4.2. In order to
have a balanced PCA computation between the meshes with
different numbers of vertices, we sample 2048 points from
each shape’s surface which we use to fit the PCA. For visu-
alization, we then apply the fitted PCA to the feature com-
puted for each mesh vertex to obtain the colored shapes
shown in Fig. 14.

We would want shapes to be colored approximately the
same, as similar parts over different shapes should also have
similar features. The results (Fig. 14) show that this is far
more the case for the back-projected DINO features when
compared to the HKS features. It is remarkable that the fea-
tures are consistent even for shapes that are fairly different,
such as different airplane types.



Table 2. Back-projected features are a strong backbone for part segmentation transfer. Label transfer results measured with average IoU.

pla. bag cap cha. ear. gui. kni. lam. lap. bik. mug pis. roc. ska. tab. avg.

[24] IDC 60.1 56.2 59.7 72.2 45.3 81.5 66.4 42.6 88.5 40.5 87.5 66.4 37.2 50.7 70.4 61.7
[13] CPAE 61.3 59.3 61.6 72.6 55.5 78.9 71.3 53.2 89.9 55.4 86.5 66.2 40.2 61.8 72.5 65.8
[3] NCP 63.7 66.7 68.7 80.2 59 78.8 72.5 61.9 91.4 57.2 89.5 61.4 44.2 63.6 79.2 69.2

O
ur

s

DINO 64.8 75.1 67.5 72.1 77.3 83.6 71.7 57.9 89.6 64.3 91.0 73.2 47.9 65.8 63.1 71.0
CLIP 59.4 66.9 73.4 62.9 70.9 76.4 68.1 52.8 84.1 57.3 86.4 66.1 43.4 63.6 62.2 66.3
EffNet 56.6 69.5 63.2 64.4 72.1 81.6 70.8 50.6 88.5 59.5 82.6 63.5 44.9 60.2 64.2 66.1
SAM 36.8 65.3 57.1 59.7 56.6 79.0 72.8 51.8 75.8 43.6 49.0 56.6 32.4 46.8 53.8 55.8

(a) HKS features on different shapes of the same class.

(b) Back-projected DINO features on different shapes of the same class.

Figure 14. The back-projected features produce more consistent
and distinctive features for similar points on different shapes.

10. Part Segmentation Transfer
To further validate the strength and generalizability of the
back-projected features, we evaluate them on the task of
part label transfer. In our experiments, we follow the setup
of Cheng et al. [13], where the goal is to transfer part seg-
mentation labels from one shape to another using the labels
from the ShapeNet part dataset [44].

In our experiments, we back-project the features onto the
3D shape, as described in Section 3.1 of the main paper, and
perform a k-nearest neighbor classification in the feature
space, querying the points on the new shape and retrieving
the best matching label for each point.

Using DINO features, we outperform the previous state-
of-the-art methods in 9 of the 15 categories, with an in-
crease of the average IoU over all classes by almost three
percent (see Tab. 2). The semantic information enables
gains of up to 18.3% IoU over previous methods for se-
lected classes. While these results underline the strong per-
formance of back-projected features, we want to emphasize
the simplicity of the used approach: The nearest-neighbor-
based classification in feature space is not informed by the
spatial connectivity of points, etc., and the used approach
is much faster than the previously proposed methods that
require additional optimization [3, 24].

Our experiments on this part segmentation transfer fur-
ther highlight the superiority of DINO features, as the back-

projected DINO features outperform other back-projected
features on this task. As with keypoint detection, CLIP and
EfficientNet features provide fairly similar results. Even
though the SAM model was trained as a foundation model
for segmentation tasks, the extracted features seem to not be
able to provide the necessary distinctiveness between dif-
ferent object parts. We suggest investigating the reasons for
this behavior further, but it could possibly be explained by
the absence of SAM’s powerful decoder that further pro-
cesses the extracted features and is possibly responsible for
the performance increase in the 2D setting.


