
Appendix

A. Definitions of Metrics and Attention Scores
Metrics. We evaluate prediction accuracy using the Av-
erage/Final Displacement Error (known as ADE and FDE)
[1, 4]. Models are validated by the best metrics computed
from 20 randomly generated trajectories for each case (best-
of-20, i.e., minADE20 and minFDE20). For agent i, we have
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Here, vectors with k come from the k-th prediction.
Attention Scores. We introduce the Attention Scores to

quantitatively analyze how each SocialCircle partition rela-
tively contributes to the final predicted trajectories. For the
target agent i and the n-th partition, it is defined as the nor-
malized squared sum of each f i (θn) ∈ Rdsc . Formally,

AttentionScore(i, n) =
f i (θn)

⊤
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. (3)

The attention score evaluates the contribution of differ-
ent partitions to the subsequent prediction network at the
feature level, meaning that a partition with more neigh-
bors may not directly lead to a higher score. It is obtained
through the combined effect of multiple layers together dur-
ing the training process, including the embedding layers
gembed, the fuse layer {Wfuse,bfuse}, as well as the back-
bone prediction model Bpred. Thus, we choose this item to
analyze how the SocialCircle contributes to the whole pre-
diction model only qualitatively.

B. Additional Experimental Analyses on NBA
SportVU Dataset

Due to the page limitations, we only report SocialCir-
cle models’ performances on ETH-UCY and SDD with
both quantitative and qualitative results. This section fur-
ther validates their detailed performance in handling differ-
ent social interaction cases in the NBA SportVU Dataset
by providing more additional qualitative results.

B.1. Dataset Configurations

The NBA SportVU Dataset [9] (short for NBA dataset) is
made up of a large number of real-world trajectories of ten
players plus a ball captured by the SportVU tracking sys-
tem during several NBA games. The complex interactions

Models
ADE
(4.0s)

FDE
(@2.0s)

FDE
(@4.0s)

Social-LSTM[1] 1.79 1.53 3.16
S-GAN[4] 1.62 1.36 2.51

Social-STGCNN[12] 1.59 0.99 2.37
STAR[20] 1.26 1.28 2.04

PECNet[10] 1.83 1.69 3.41
NMMP[5] 1.33 1.11 2.05

GroupNet+NMMP[18] 1.25 1.08 1.80
GroupNet+CVAE[18] 1.13 0.95 1.69

MemoNet[19] 1.25 N/A 1.47

V2-Net*[16] 1.28 0.96 1.68
V2-Net-SC 1.22 0.92 1.51

E-V2-Net*[17] 1.26 0.93 1.64
E-V2-Net-SC 1.18 0.90 1.46

Table 1. Comparisons on NBA under best-of-20 in meters. Lower
ADE and FDE indicate better prediction performance. Models
with “*” are reproduced under the same training settings.

V2-Net
V2-Net-SC

E-V2-Net
E-V2-Net-SC

Figure 1. Loss curves (ℓ2 loss at different training epochs) of dif-
ferent models at different training runs on NBA dataset. Curves
are smoothed with the decay factor = 0.8.

between different players will pose significant challenges
for trajectory prediction. Positions of all players and balls
are labeled in foot (1 foot = 0.3048 meter).

Following the settings of [18, 19], we predict future tf =
10 frames’ trajectories based on the past th = 5 frames’ ob-
servations. The sample interval between two frames is still
set to ∆t = 0.4s. Frames where the basketball is not on
the court will be ignored. We randomly sample about 50K
prediction cases (i.e., 50K trajectories) from multiple games
to validate models. Among these cases, 65% (about 32,500
samples) will be used for training, 25% (about 12,500 sam-
ples) for testing, and the remaining 10% for validation.

B.2. Baselines

We choose Social-LSTM[1], S-GAN[4], Social-
STGCNN[12], STAR[20], PECNet[10], NMMP[5],
GroupNet+NMMP[18], GroupNet+CVAE[18],
MemoNet[19], V2-Net*[16], and E-V2-Net*[17] as
our baselines on NBA dataset.
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Figure 2. Visualized predicted trajectories provided by SocialCircle model E-V2-Net-SC (subfigures (a1) to (a8)) and the original E-V2-
Net (subfigures (b1) to (b8)) on several NBA prediction scenes. Each sample includes 20 randomly generated trajectories.

B.3. Metrics

Except for ADE and FDE (minADE20 and minFDE20),
following [18], we use the FDE-at-t-moment as a new
metric to measure prediction performance. In detail, un-
der the setting of (th, tf ) = (5, 10) with sample interval
∆t = 0.4s, the newly added metric FDE-at-5th-moment
(minFDE20@2.0s, short for FDE@2.0s) is defined as

minFDE20(t) = min
k

∥∥∥pi
t − p̂k

i
t

∥∥∥
2
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FDE@2.0s = minFDE20(t = th + 5). (5)

The original FDE can be treated as FDE@4.0s, i.e.,

FDE@4.0s = minFDE20(t = th + 10). (6)

B.4. Quantitative Analyses

Comparisons to State-of-the-Art Methods. As shown in
Tab. 1, the SocialCircle model E-V2-Net-SC has achieved
competitive results. Compared with the GroupNet+CVAE
that obtains the best ADE, E-V2-Net-SC’s ADE is not as
well as that model (about 4.42% worse ADE), but its FDEs
(both at 2.0s and 4.0s) are better than those for about 5.26%
and 13.60%. In addition, even though the FDE@4.0s of
MemoNet and E-V2-Net-SC are at the same level (less than
1% differences), E-V2-Net-SC outperforms the other for

about 5.60% ADE. Although the original E-V2-Net per-
forms not as well as these newly published methods, the
proposed SocialCircle makes it available to achieve com-
petitive results.

Ablation Studies. We validate SocialCircle on two
backbone models, V2-Net and E-V2-Net, and report their
corresponding SocialCircle models’ performance in Tab. 1.
With the help of the proposed SocialCircle, both these mod-
els have achieved considerable quantitative performance
gains. In detail, compared with the basic V2-Net, V2-Net-
SC has achieved the 4.68% better ADE and the 10.11% bet-
ter FDE (@4.0s). The E-V2-Net-SC also outperforms E-
V2-Net for about 6.34% ADE and 10.97% FDE (@4.0s).
These results indicate the quantitative effectiveness of the
proposed SocialCircle for handling prediction cases with
complex social interactions on NBA dataset.

B.5. Qualitative Analyses

Analyses of the Training Process. We visualize the loss
(ℓ2 loss) curves of V2-Net, E-V2-Net, and their Social-
Circle models at multiple training runs on NBA dataset in
Fig. 1. All these models are trained under the same set-
tings. It shows that the loss values drop faster and finally
become lower by introducing SocialCircle to baseline mod-
els. In addition, their loss values become more stable across



different training runs compared to the original model. We
can infer that the proposed SocialCircle may also play a nor-
malization factor, thus reducing the influence of random-
ized training factors (such as the shuffle operation at each
training epoch and the randomly sampled noise vectors to
generate multiple predictions).

Visualizations of Social Behaviors. We visualize trajec-
tories forecasted by the SocialCircle model E-V2-Net-SC
and the original E-V2-Net in several NBA scenes in Fig. 2.
These models do not take into account agents’ categories
(i.e., players with different teams or basketball) when fore-
casting trajectories. For prediction scenes with different dis-
tributions of neighbor players, E-V2-Net-SC’s predictions
present better interactive trends.

Comparing Fig. 2 (a1 to a4) and (b1 to b4), several tra-
jectories predicted by the non-SocialCircle model (b1 to b4)
have gone out of the court, while there are rarely these cases
in the predictions of SocialCircle model (a1 to a4). It shows
that SocialCircle models could learn players’ different be-
havior patterns according to the SocialCircle, even though
they do not know where the borders of the court are, thus
making their predictions in line with the scene context.

In addition, the game-related interaction is a class of in-
teractions specific to the NBA dataset, such as players car-
rying the ball on offense, switching from offense to defense,
and many other interactive behaviors. Comparing Fig. 2 (a5
to a8) and (b5 to b8), we can see that SocialCircle could also
better describe these interactive behaviors. For example,
agent “Isaiah Thomas” moves from a complete standstill to
start moving from the free throw lane during the observation
period in case (a6). According to other players’ status, the
SocialCircle model finally provides predictions that seem
like running to the frontcourt to start the offense. Unlike
predictions shown in Fig. 2 (a6), trajectories predicted by
the non-SocialCircle model appear very confusing, includ-
ing both aggressive and defensive. Other game-interactive
cases, like scoring in various ways in case (a7) and the flex-
ible movements in case (a8), present similar trends, which
indicates SocialCircle’s capability to handle various social-
interactive behaviors in different prediction scenes.

C. Additional Experimental Analyses on
nuScenes Dataset

SocialCircle is proposed to handle interactions among
pedestrians. In this section, we conduct a series of experi-
ments on the nuScenes dataset [2, 3] to further validate how
SocialCircles model interactions among vehicles as well as
how they perform in traffic prediction scenes.

C.1. Dataset Configurations

The nuScenes[2, 3] is a large-scale real-world dataset of
1000 driving scenes collected in the urban cities of Boston

Models ADE5 FDE5 ADE10 FDE10

Trajectron++[15] 3.14 7.45 2.46 5.65
Y-net[11] 2.46 5.15 1.88 3.47

Agentformer[21] 1.59 3.14 1.30 2.47
MUSE-VAE[6] 1.38 2.90 1.09 2.10

E-V2-Net*[17] 1.46 3.18 1.15 2.37
E-V2-Net-SC 1.44 3.10 1.13 2.30

Table 2. Comparisons on nuScenes under best-of-5 and best-of-10
in meters. Lower ADE and FDE indicate better prediction perfor-
mance. Models with “*” are reproduced under the same settings.

and Singapore. Each scene has 20 seconds and is annotated
at 2 fps. 850 scenes were manually annotated for 23 classes,
such as pedestrians and vehicles, and included visibility, ac-
tivity, and pose attributes. Note that only vehicles’ 2D tra-
jectories
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are used in this paper. Fol-
lowing the settings of [6], we predict future tf = 12 frames’
trajectories according to vehicles’ past th = 4 frames’ ob-
served trajectories. The sample interval between two adja-
cent frames is set to ∆t = 0.5s. Since the annotations of
the official 150 test sets are not available, following previ-
ous works like [14], we use 550 scenes to train, 150 scenes
to validate, and the other 150 scenes to test.

C.2. Baselines

We choose Trajectron++[15], Y-net[11], Agentformer[21],
MUSE[6], and E-V2-Net* as our baselines on nuScenes.

C.3. Metrics

Following previous works like [6], we use both best-of-5
and best-of-10 validations to evaluate models’ performance
on nuScenes. Like the main paper, we denote these metrics
as minADE5/minFDE5 and minADE10/minFDE10 (short
for ADE5/FDE5 and ADE10/FDE10).

C.4. Quantitative Analyses

Tab. 2 reports the quantitative performance of several base-
line models and the corresponding E-V2-Net model. Al-
though the base model (E-V2-Net) is not specifically de-
signed to predict trajectories in traffic scenes, SocialCir-
cle still shows its capability to model interactions among
vehicles. Compared to the vanilla E-V2-Net, E-V2-Net-SC
has a 1.4% better ADE5 and a 2.5% better FDE5. The per-
formance gain brought by the SocialCircle is more remark-
able as the number of predicted trajectories rises from 5 to
10, including 1.7% on the ADE10 and 3.0% on the FDE10.

Although SocialCircle could help the base model E-V2-
Net to perform better, there are still noticeable differences
in the performance between E-V2-Net-SC and the MUSE-
VAE that focus mainly on vehicle trajectory prediction, in-
cluding 3.7% and 9.5% worse ADE10 and FDE10. It is



Variations Nθ ADE/FDE Gain (%)

V2-Net* - 7.04/10.94 -4.92%/-2.63%
V2-Net-SC-a4 1 6.96/11.05 -3.73%/-3.66%
V2-Net-SC-a5 4 6.79/10.80 -1.19%/-1.31%

V2-Net-SC 8 6.71/10.66 (base)
V2-Net-SC-a6 12 6.65/10.60 +0.89%/+0.56%
V2-Net-SC-a7 16 6.68/10.65 +0.45%/+0.09%
V2-Net-SC-a8 36 6.64/10.64 +1.04%/+0.19%

E-V2-Net* - 6.73/10.75 -2.91%/-3.76%
E-V2-Net-SC-a4 1 6.66/10.70 -1.83%/-3.28%
E-V2-Net-SC-a5 4 6.61/10.55 -1.07%/-1.83%

E-V2-Net-SC 8 6.54/10.36 (base)
E-V2-Net-SC-a6 12 6.50/10.34 +0.61%/+0.19%
E-V2-Net-SC-a7 16 6.46/10.22 +1.22%/+1.35%
E-V2-Net-SC-a8 36 6.57/10.41 -0.46%/-0.48%

Table 3. Ablation studies on verifying the number of SocialCir-
cle partitions Nθ with different backbone models on SDD. Values
in the “Gain” column are the percentage ADE and FDE gain com-
pared to the base 8-partition model (denoted with “(base)”).

𝑁! = 12 
𝑁! = 16 
𝑁! = 36 

Loss Curves

𝑁! = 12 
𝑁! = 16

𝑁! = 36 

Metrics Curves

Figure 3. Loss curves (left, ℓ2 loss) and metrics curves (right,
ADE) of E-V2-Net-SC variations a6 to a8 (Nθ ∈ {12, 16, 36}).

worth noting that MUSE-VAE uses additional lane informa-
tion to help predict better, whereas neither the base model
E-V2-Net nor the corresponding SocialCircle model E-V2-
Net-SC do not. This further inspires us to design meta com-
ponents for the SocialCircle in traffic prediction scenarios.

D. Additional Experimental Analyses on the
Number of SocialCircle Partitions

D.1. Quantitative Analyses

We run ablation experiments to validate how the number
of SocialCircle partitions Nθ affects models’ quantitative
performance. In Tab. 3, 8-partition SocialCircle models
perform the best, outperforming 4-partition variations for
about 1.1% to 1.8% ADE and FDE. Especially, models with
Nθ = 1 work even worse, including up to 2.5% ADE drop
compared to 4-partitions’. Comparing V2-Net and V2-Net-
SC-a4, we find that the latter one even has about 0.1 pixels
worse FDE. It aligns with our intuition that the more parti-
tions the higher resolutions for describing social behaviors.
While vice versa, too few partitions may lead to a coarse de-
scription of interactions, even mislead the model, thus sig-
nificantly reducing prediction performance.

Note that due to the settings of predicting trajectories
based on 8 historical observed frames on SDD, the maxi-
mum number of partitions is set to 8 to prevent unnecessary
zero-paddings in trajectories’ representations from pulling
down the performance of the original backbone trajectory
prediction network. To verify this thought, we expand the
SocialCircle to make it available to handle Nθ > th cases
by zero-padding trajectory representations (i.e., the f itraj in
Eq. (13)). Results of variations with postfixes {a6, a7, a8}
reported in Tab. 3 are obtained under this new setting. In ad-
dition, we have attached the loss curves and metrics curves
of these Nθ > th variations in Fig. 3. It shows that the
loss may drop faster as the Nθ raises, but simultaneously
exacerbates the risk of overfitting. We can further infer that
even though a higher Nθ may provide better results, it also
compresses the information in trajectories while reducing
training stability. On balance, Nθ = 8 may be a good com-
promise (ETH-UCY and SDD). As a result, we regard that
Nθ should be no more than the th in the main paper.

D.2. Qualitative Analyses

Fig. 4 provides the visualized attention scores in different
prediction cases on SDD-little0 with the Nθ = 4 (subfigures
(a1) to (a5)) and the Nθ = 8 ((b1) to (b5)) E-V2-Net-SC
models. These two models are trained and validated under
the same condition except for the Nθ.

Comparing Fig. 4 (a3) and (b3), the 8-partition model
provides trajectories with different social behaviors for θ ∈
[1.5π, 2π), i.e., partitions 7 and 8. In detail, predictions
in partition-8 mostly try to avoid the right-coming neigh-
bor, while predictions in partition-7 mostly walk as nor-
mal cases. For the 4-partition model’s predictions in Fig. 4
(a3), predictions within the whole partition-4 all present the
avoidance tendance, even though some predicted trajecto-
ries are far away from the existing neighbors. Similar cases
also appear in cases (a2, partition-4) v.s. (b2, partitions 7
and 8) and cases (a5, partition-3) v.s. (b5, partitions 5 and
6). All these comparisons point out that a smaller number
of SocialCircle partitions may lead to a coarser recognition
and modeling of social behaviors, thus further causing mis-
leading shifts in the predicted trajectories.

We also add manual neighbors to real-world predic-
tion cases on SDD-little0 to validate both Nθ = 4 and
Nθ = 8 E-V2-Net-SC models’ responses. As shown in
Fig. 5, Nθ = 8 model presents better spatial resolutions for
handling social interactions. For example, compared to the
Nθ = 4 case (c2, partition-1), the corresponding Nθ = 8
partition (c4, partition-2) has been less affected due to the
manual neighbor. As a result, predictions in 8-partitions
cases {(c4, partition-3), (c4, partition-4)} show different in-
teractive trends. These results indicate that 8-partition So-
cialCircle models have better angular resolution to model
potential social interactions as well as quantify their roles
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prediction. subfigures (x2) and (x4) are obtained by adding manual neighbors to cases (x1) and (x3), respectively.



Models
ADE/FDE ↓
(ETH-UCY)

Time ↓ Paras. ↓

Social-LSTM[1] 0.72/1.54 1180 ms 264K
SR-LSTM[22] 0.45/0.94 1179 ms 64.9K
PECNet[10] 0.29/0.48 607 ms 2.10M

Next[8] 0.46/1.00 114 ms 360.3K
S-GAN[4] 0.58/1.18 97 ms 46.3K

DAG-Net[13] N/A 46 ms 2.35M
Social-STGCNN[12] 0.44/0.75 2.0 ms 7.6K

STC-Net[7] 0.38/0.68 1.3 ms 0.7K
V2-Net*[16] 0.18/0.28 19 ms 1.91M

E-V2-Net*[17] 0.17/0.28 21 ms 1.92M

V2-Net-SC 0.17/0.27 23 ms 1.92M
E-V2-Net-SC 0.17/0.27 24 ms 1.98M

Table 4. Comparisons of inference time and model parameters.
Results are obtained from [7] on one NVIDIA GeForce GTX
1080Ti card. Models with “*” are reproduced with PyTorch.

in modifying forecast results.

Model
Inference time @batchsize

Parameters
1 50 100 500 1000

V2-Net 28 30 31 38 81 1,911,264
V2-Net-SC 34 35 36 55 88 1,923,936

E-V2-Net 28 33 37 67 112 1,976,864
E-V2-Net-SC 34 39 43 73 119 1,989,536

Table 5. Inference times (in milliseconds) at different batch size
settings (from 1 to 1000) and the number of trainable parameters of
V2-Net, E-V2-Net, and their corresponding SocialCircle models.
Results are obtained by running models (PyTorch) on one Apple
Mac mini (M1, 2020) with 8GB memory.

E. Parameters and Inference Times
Comparisons with Other Baselines. We compare the in-
ference speed and the number of parameters of different
models in Tab. 4. All results are measured on one NVIDIA
GeForce GTX 1080Ti GPU (short for “1080Ti”). Since
the official codes of V2-Net and E-V2-Net are implemented
with TensorFlow and run slowly in our Python environment
on the server, we reproduce their codes with PyTorch and
report their running time (batch size is set to 1, marked with
“*”) in Tab. 4. From these results we can see that the So-
cialCircle itself would not lead to a large number of com-
putations and extra trainable variables. Compared to the
original models, the inference times of their corresponding
SocialCircle models are still considerable.

Further Discussions on the Inference Speed. Consider-
ing that the platform on which trajectory prediction models

are running may not be equipped with high-performance
computing devices, all results reported in Tab. 5 are ob-
tained on one Apple Mac Mini with an Apple M1 chip (8GB
memory), which performs similarly to current iPhones and
iPads. Additionally, several researchers like [7] have de-
fined the low-latency trajectory prediction, which indicates
that the trajectory prediction method should predict trajec-
tories within the sampling interval to achieve the real-time
prediction goal. For example, when predicting trajectories
on ETH-UCY with a sample rate of 2.5 fps, the implement-
ing time of the model should be less than 400 ms. Results
in Tab. 5 show that the proposed methods could meet the
low-latency standard even when running on the Apple M1
chip, indicating their potential to be applied to complex ap-
plication scenarios.

F. Additional Visualized Toy Examples

To demonstrate the effectiveness of the proposed SocialCir-
cle in handling different social interaction cases, following
the settings in Section 4.3 Toy Examples I (Social Inter-
actions), we provide more visualized toy examples in the
real-world UCY-zara1 prediction scenes in this section. In
these toy examples, we add one manual neighbor to each
prediction case, thus visualizing how SocialCircle modifies
the original predicted trajectories under different interaction
contexts.

In the main paper, we use a simple linear interpolation
method to simulate manual neighbors’ trajectories. For
agent i, given two points pi

0 and pi
th

(1 ≤ t ≤ th), the
linearly-interpolated coordinate pi

t is computed via

pi
t = pi

0 +
pi
th

− pi
0

th
t. (7)

Fig. 6 includes more visualized predictions under differ-
ent linearly interpolated manual neighbor settings. We also
designed a non-linear interpolation method to further val-
idate SocialCircle’s capability, which linearly interpolates
the velocity from each adjacent two of the three given points
to generate manual neighbors with curved trajectories via

vi
t = pi

t − pi
t−1, (8)

vi
t = vi

0 + t∆v, (9)
th∑
t=1

vi
t = pi

th
− pi

0. (10)

Thus, ∆v can be represented as

∆v =
2(pi

th
− pi

0 − vi
0th)

th(th + 1)
, (11)
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Figure 6. Toy examples (linear interpolation) on validating the effectiveness of the overall modification of social interactions. We add
manual neighbors to the original ETH-UCY prediction scenes and visualize how they change the predicted trajectories. Prediction case in
subfigure (xn), where x ∈ {a, c, e}, n ∈ {1, 2, 3, 4, 5, 6}, represents the original prediction scene in UCY-zara1, and the corresponding
(yn, y ∈ {b, d, f}) case represents prediction considering the manual neighbor.

and we can finally determine the coordinate pi
t at any mo-

ment t. Formally,

pi
t = pi

0 +

t∑
n=1

n∆v. (12)

These trajectories and the corresponding SocialCircle pre-
dictions are shown in Fig. 7. In both figures, we observe
that after adding manual neighbors with a certain velocity
around the target agent, its new predicted trajectories tend
to keep a certain social distance to the manual neighbor in
most cases. For example, in Fig. 6 (b2, b3, b4) and Fig. 7
(b1, b3, b4), the target agents are predicted to move away
from the manual neighbors dramatically. In some cases, like

Fig. 6 (d6, f1) and Fig. 7 (b5, b7), the originally predicted
trajectories of the target agent before adding the manual
neighbor have already demonstrated a strong trend of move-
ment toward certain destinations. Among these cases, if we
add a manual neighbor that also moves toward such a des-
tination with a relatively fast velocity, the newly predicted
trajectories of the target agent may change heavily to avoid
possible collisions or keep certain social distances with the
manual neighbor.

Unlike these situations, Fig. 6 (f6) and Fig. 7 (b2), repre-
sent a different way to handle interactions in which the pre-
dicted trajectories have shifted to the left to avoid the fast-
moving manual neighbor coming from the left side, rather
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Figure 7. Toy example (linear-velocity interpolation) on validating social interactions. Compared to the linearly-interpolated trajectories,
we add several non-linear patterns to the trajectories of manual neighbors to further reflect their fine-level motions. The prediction case
in subfigure (an), where n ∈ {1, 2, 3, 4, 5, 6, 7}, represents the original prediction scene in UCY-zara1, and the corresponding (bn) case
represents prediction considering the curved-moving manual neighbor.

Variations V D R mR ADE/FDE Drop (%)

E-V2-Net* ××× × 6.73/10.75 -2.91%/-3.76%
E-V2-Net-SC ✓✓✓ × 6.54/10.36 (base)

E-V2-Net-SC-4f ✓✓✓ ✓ 6.84/10.94 -4.59%/-5.60%

Table 6. Ablation studies on validating the movement direction
(“mR”) factor on SDD. “V”, “D”, and “R” represent current ve-
locity, distance, and direction factors. Values in “Drop” are the
percentage matrices drop compared to the base model.

than shifted to the right side. These phenomena demonstrate
that the SocialCircle models could dynamically handle dif-
ferent interactive contexts in different prediction scenes,
thus providing trajectories in line with social rules. In short,
the three meta components (velocity, distance and direction)
used in SocialCircle have the potential to reflect different
interactive contexts and further promote the prediction net-
works to learn to generate divergent trajectories.

However, we also observe that there exist some cases in
which predictions do not comply with interactive contexts.
In Fig. 6 (d3), SocialCircle model still remains the way it
forecasts trajectories for the target agent even after adding a
near enough manual neighbor with a relatively fast velocity.
In Fig. 6 (d2), after adding the fast-moving manual neighbor
on the right side, the left part of the predicted trajectories
are pruned off. Although the quantitative prediction per-
formance has not been influenced, it actually constrains the
diversity of the predicted trajectories. Therefore, the three
meta components (velocity, distance and direction) used in
SocialCircle are still worthy of further studies to simulate
and forecast in more complex interactive cases.

G. Further Discussions on Limitations

As mentioned in the “Limitations” section, neighbor agents’
movement directions have not been considered in the pro-
posed SocialCircle. This section further discusses whether

the movement direction factor should be considered as one
of the SocialCircle meta components.

G.1. Limitation Analysis

As shown in Fig. 8, we conducted another toy experiment to
show models’ responses to the manual agent with different
movement directions. In all 3-factor cases (a2) to (a5), the
SocialCircle model forecasts almost the same trajectories
(except for the noise factor for random generation). It is
worth noting that the predictions in case (a3) are relatively
“dangerous”, for there might be potential collisions or too-
close social distances with the manual neighbor.

From the point of view of network training, we can sim-
ply understand that the whole prediction network forecasts
an “average” trajectory to satisfy all these training samples
with the same SocialCircle but move in different directions.
As a result, it may predict trajectories with avoidances for
the neighbors that may not collide with the target agent (like
Fig. 8 (a5)), or may still collide with others (like Fig. 8 (a3)).

It should be noted that these extreme cases in the toy ex-
periments are rarely seen in real-world prediction scenarios.
In most ETH-UCY and SDD scenes, SocialCircle models
still work as expected. Nevertheless, these few uncovered
social interaction cases still indicate their limitations, al-
though they have achieved better quantitative performance.

G.2. The Movement Direction Factor.

Following the “lite-rules” assumption, we attempt to add
the movement direction factor to provide detailed interac-
tive information. It is defined as the average of each neigh-
bor’s moving direction located in some partition. Formally,

f imdir (θn) =
1

|Ni(θn)|
∑

j∈Ni(θn)

atan2
(
f2D

(
pj
th

− pj
1

))
.

(13)
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Figure 8. Visualized E-V2-Net-SC predictions with manual neighbors with different movement directions. In this toy experiment, we set
dm = 2.97 and vm = 4.00. (a1) to (a5) are predictions provided by the 3-factor SocialCircle model, and (b1) to (b5) are predictions by
4-factor model. Cases (a1) and (a5) are their original predictions without any given manual neighbors.

High
Scores

Low
Scores

1
23

4
5
6 7

8

(a1) (a2) (a3) (a4) (a5)

(b1) (b2) (b3) (b4) (b5)

Figure 9. Visualized predicted trajectories and their corresponding attention scores in several real-world prediction cases (SDD-little0)
provided by the 4-factor E-V2-Net-SC (a1) to (a5) and the 3-factor E-V2-Net-SC (b1) to (b5).

The corresponding 4-factor SocialCircle meta vector is

f imeta (θn) =
(
f ivel (θn) , f

i
dis (θn) , f

i
dir (θn) , f

i
mdir (θn)

)⊤
.

(14)

G.3. Ablation Studies and Visualized Analyses of
the Movement Direction Factor

Quantitative Analyses. We run experiments to quantita-
tively validate the usefulness of this movement direction
factor on SDD, and their results are reported in Tab. 6. By
adding this additional factor, the E-V2-Net-SC-4f’s perfor-
mance drops significantly. Compared to the 3-factor E-
V2-Net-SC, it has 4.59% worse ADE and 5.60% worse
FDE. Especially, its performance is even worse than the
non-SocialCircle-model E-V2-Net, which means that just
adding such a simple new factor prevents other factors from
expressing their contributions.

We infer that the movement direction factor brings more
complex constraints to each prediction case, thus mak-
ing the training process more difficult while reducing the
model’s generalization capability. In detail, the current
three factors (velocity, distance, direction) are relatively
“weak” rules to describe social interactions. Thus, the ob-
tained SocialCircles could be similar even in different pre-
diction cases. On the contrary, the movement direction fac-
tor varies from 0 to 2π for each neighbor in each partition,
which brings extra “complexity” for each interactive case,
thus further increasing the difficulty of model training in the
case of the same network structure and training data.

Validation of Moving Directions. In Fig. 8 (b1) to (b5),
we visualize the predicted trajectories provided by the 4-
factor E-V2-Net-SC corresponding to cases (a1) to (a5). We
can easily see that predictions in cases (b2) to (b5) are dif-
ferent due to the various moving directions of the given
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Figure 10. Visualized predicted trajectories and the corresponding attention scores of several real-world cases by adding additional manual
neighbors. For each case x ∈ {a, b, c, d}, subfigure (x1) is the 4-factor model’s prediction, and (x3) is the 3-factor model’s prediction.
subfigures (x2) and (x4) are obtained by adding manual neighbors to cases (x1) and (x3), respectively.

manual neighbor. However, trajectories forecasted by the
4-factor model are far worse than those predicted by the 3-
factor model. In detail, several randomly generated trajecto-
ries are distributed “messily” around the target agent, which
could be caused by the “misleading” of 4-factor SocialCir-
cle on predicted trajectories at different spatial positions.
In other words, the newly added movement direction factor
may prevent the backbone prediction model from exhibiting
its original prediction performance.

Moving Directions and Attention Scores. We visualize
predictions of both 3-factor and 4-factor SocialCircle mod-
els on more real-world scenes in Fig. 9 and toy prediction
cases with manual neighbors in Fig. 10. Comparing Fig. 9
(a1) and (b1), it shows that more SocialCircle partitions
have been paid attention to (red colored partitions) in the 4-
factor model in (a1) than (b1). Cases {(a2), (b2)} and {(a3),
(b3)} also show similar trends. It means that more partitions
or neighbors (i.e., more “rules”) are considered simultane-
ously to make final predictions for the 4-factor SocialCir-

cle model. In addition, predictions provided by the 4-factor
SocialCircle could hardly handle interactive behaviors in
complex social interaction cases. For example, predictions
in partitions 7 and 8 in Fig. 9 (b3) show strong avoidance
trends to the coming neighbor. In contrast, predictions in
the same partitions in (a3) have almost no responses. More
visualized toy results with manual neighbors on real-world
scenes are available in Fig. 9.

G.4. Summary of the Movement Direction Factor

The 3-factor SocialCircle (velocity, distance, direction)
could not reflect neighbor agents’ moving directions when
modeling social interactions and forecasting trajectories. It
takes an “average” way to handle neighbors with different
movement directions, which means that its forecasted tra-
jectories may not fit the interaction context well in some
“extreme” interaction cases (like Fig. 8 (a3)).

We try to address this limitation by adding the new
movement direction factor to the SocialCircle meta com-



ponents. However, the newly added factor may lead to a
performance drop. As we can see from the visualized pre-
dictions and attention scores, it is most likely due to adding
too many constraints to the interaction cases, which reduces
the model’s ability to generalize across different complex
prediction scenarios. Although the new factor could help
to represent better interactive behaviors in some specific
cases, degrading the original performance of the prediction
model is something we do not expect. Therefore, the move-
ment direction factor is deprecated in the SocialCircle. The
currently proposed SocialCircle is a compromise that de-
votes itself to describing interactive behaviors through as
few rules as possible while maximizing its usability in dif-
ferent trajectory prediction scenes. We will further investi-
gate this limitation in our subsequent work.
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