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Appendix

A. More Related Work
The challenge of one-image 3D generation has recently at-
tracted significant attention, with various approaches and
methods proposed to address this complex problem [2]. In
this section, we provide a brief review of the literature.

Classical 3D generative methods. Early works can be
broadly categorized into two main groups: primitive-based
approaches and depth estimation approaches. Primitive-
based approaches [13, 34, 36], focus on the fitting of prim-
itive 3D shapes to 2D images, seeking to align synthetic
models with observed image features. They often employ it-
erative optimization to refine the pose and shape of the model
until a satisfactory fit is achieved. On the other hand, depth
estimation approaches [40, 43] typically follow a two-step
process: They first use a monocular depth estimator (e.g.,
MiDaS [28]) to predict the 3D geometry, which is then used
to render artistic effects through multi-plane images [15, 31]
or point clouds [24]. To address imperfections, a pre-trained
inpainting model [41] is often applied to fill in missing holes.
However, these early approaches may struggle with general-
ization to real-world data or new object categories.

3D native models. A line of research [5, 7, 8, 11, 13,
32, 38] follows an encoder-decoder framework for mod-
eling the image-to-3D data distribution, which involves
the use of global shape latent codes to directly encode
the shape information from 3D assets (e.g., ShapeNet [1],
Pix3D [33]). In contrast, other works utilize local features
and representation-specific 3D generative models that lever-
age priors constructed from 3D primitives in various for-
mats: point clouds [10, 13, 23, 39, 42], voxels [3, 6, 7, 35],
meshes [4, 12, 17, 21, 36], or parametric surfaces [14, 30].
While these 3D native models show impressive performance,
they often require extensive 3D data and are constrained to
specific object classes within that data. They also suffer from
quality degradation when handling real-world images due to
domain disparities. Recently, Point-E [25] and Shap-E [16]
propose learning text-to-3D diffusion models on large-scale
3D assets to mitigate some of these limitations.

B. Additional Experimental Setup
Diversity evaluation. Due to the inherent stochastic na-
ture of diffusion models, the outputs they generate can be
different w.r.t. the random seed used for their generation.
Therefore, the computed metrics can differ depending on the
seed we use. To evaluate the diversity of generated samples
from each model, we randomly sample 4 instances using
different random seeds from the same input image. We then

use the CD score to quantify the diversity. By calculating
the CD score across these sampled instances (each derived
from a different random seed but originating from the sample
input images), we obtain an average CD score. This average
CD score represents the overall dissimilarity or diversity
observed among the generated samples. The reported values
in the main paper are the average CD score calculated across
these sampled instances.

Technical details. HarmonyView is built upon the pre-
trained models of SyncDreamer [20], which generates a set
of N = 16 multi-view images, each with an elevation of 30◦

and azimuths evenly distributed in the range of [0◦, 360◦].
We assume that the azimuth of both the input view and
the first target view is set to 0◦. The viewpoint differences
∆v(n) are calculated based on the differences in elevation
and azimuth between the input view and target view. At test
time, similar to [19, 20, 22, 27], we estimate an elevation
angle and use it as an input. To reconstruct the 3D mesh, we
use foreground masks for generated images using CarveKit1,
and train the NeuS [37] for 2k steps. For text-to-image-to-3D,
2D images from the input text are created with the assistance
of DALL-E-32.

Baselines. In our work, we employ several state-of-the-art
methods as baseline models: Zero123 [19], RealFusion [22],
Magic123 [27], One-2-3-45 [18], Point-E [25], Shap-E [16],
and SyncDreamer [20]. Zero123 [19] is able to generate
novel-view images of an object from various viewpoints
given a single-view image. Moreover, its integration with
the SDS loss [26] bolsters its capability for 3D reconstruc-
tion from single-view images. RealFusion [22] leverages
Stable Diffusion [29] and the SDS loss for achieving high-
quality single-view reconstruction. Magic123 [27] builds
upon the strengths of Zero123 [19] and RealFusion [22],
resulting in a method that further improves the overall qual-
ity of 3D reconstruction. One-2-3-45 [18] takes a direct
approach by regressing Signed Distance Functions (SDFs)
from the output images of Zero123 [19]. Point-E [25] and
Shap-E [16] represent 3D generative models trained on an
extensive 3D dataset. Both models exhibit the capability
to convert a single-view image into either a point cloud or
a shape encoded in an MLP. SyncDreamer [20] produces
multi-view coherent images from a single-view image by
synchronizing intermediate states of generated images using
a 3D-aware feature attention mechanism.

1https://github.com/OPHoperHPO/image-background-remove-tool
2https://cdn.openai.com/papers/dall-e-3.pdf
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Figure 1. User evaluation examples. We perform a user study to evaluate the effectiveness of our approach, HarmonyView, in comparison
to SyncDreamer [20] and Zero123 [19]. Participants were asked to rate the three approaches using a 5-point Likert-scale (1-5), assessing (a)
Quality, (b) Consistency, and (c) Diversity.

C. Correlation between CD score and Human
Evaluation

To assess the efficacy of HarmonyView against Sync-
Dreamer [20] and Zero123 [19], we conducted a user study
where participants rated the three approaches using a 5-point
Likert-scale (1-5), evaluating (a) Quality, (b) Consistency,
and (c) Diversity. Our user study, showcased in Fig. 1, reveals
a consistent alignment between the CD Score (CD Score =
D/SV ar) and human evaluation metrics. Throughout the
study, we observed that the CD Score reliably reflects the
correlation between two key factors: SV ar, measuring the
diversity in generated images’ alignment with a given text
prompt, and D, evaluating creative variation against a refer-
ence view using CLIP image encoders.
1. Semantic Variance (SV ar) and Consistency: Lower Se-
mantic Variance consistently corresponds to higher consis-

tency in human evaluation. In simpler terms, when the gen-
erated images are more aligned in their interpretation of the
text prompt, human evaluators tend to agree more on the
perceived consistency. This correlation implies that there’s a
negative relationship between Semantic Variance and Con-
sistency — lower variance often leads to higher agreement
among evaluators.
2. Diversity Score (D) and Quality Perception: Higher
Diversity Scores tend to lead to lower quality perceptions in
human evaluation. This suggests a somewhat negative corre-
lation between Diversity Score and Quality Perception. Put
differently, when the diversity among the generated images
is higher — meaning they deviate more from the reference
image — human evaluators tend to perceive lower quality.
Conversely, higher similarity between the generated images
and the reference image correlates with higher perceived
quality. In essence, when the visual similarity between the
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Figure 2. Qualitative ablation study on novel-view synthesis. Our HarmonyView guides the multi-view diffusion process with two
parameters, s1 and s2 (see ??). The nuanced interplay between s1 and s2 impacts consistency and diversity throughout the generation
process. By skillfully balancing these guiding principles, we can achieve a win-win scenario: generate diverse images that maintain coherence
across multiple views and stay faithful to the input view.

input and target views is higher, the quality tends to be per-
ceived as better by human evaluators.

These findings collectively underscore the critical balance
needed between semantic diversity and adherence to the
reference image in the pursuit of generating high-quality
images aligned with text prompts. Achieving this delicate
equilibrium is pivotal to ensure that generated images are
diverse enough to capture different interpretations while also
being faithful enough to the reference to maintain perceived
quality. HarmonyView demonstrated the highest CD score
compared to SyncDreamer [20] and Zero123 [19], indicating
that our generated images strike a winning balance between
consistency and diversity, excelling in both aspects of fidelity
to the reference image and semantic variation.

D. Additional Results

D.1. Novel-view Synthesis

Qualitative ablation study. Our HarmonyView decom-
poses multi-view diffusion guidance into two distinct guid-
ance components (see Eq. (7)): s1 primarily serves to ensure
visual consistency between the input and target views, while
s2 focuses on amplifying diversity across novel viewpoints.
The significance of this approach is showcased in Fig. 2,
where we visually demonstrate how each guidance factor
influences the synthesized images. When prioritizing s1, the
quality of synthesis improves significantly as it focuses on
aligning the visual consistency between the input and target
views. However, in specific cases, like the deer sample, it
generates multiple faces of the deer, leading to what’s known
as the “Janus problem” — creating facial features on the rear
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Figure 3. Additional novel-view synthesis comparison. HarmonyView creates diverse, coherent multi-view images for complex scenes,
effortlessly generating realistic front views from rear-view input images.

Method PSNR↑ SSIM↑ LPIPS↓ Eflow↓
Best Avg. Var. Best Avg. Var.∗ Best Avg. Var.∗ Best Avg. Var.

Zero123 [19] 18.98 18.79 0.048 0.795 0.792 1.003 0.166 0.170 2.025 3.820 4.185 0.197
SyncDreamer [20] 20.19 19.74 0.242 0.819 0.813 4.465 0.140 0.148 7.922 2.071 2.446 0.458
HarmonyView 20.69 20.24 0.260 0.825 0.819 5.295 0.133 0.140 8.038 1.945 2.350 0.510

Table 1. Statistical analysis of novel-view synthesis on GSO [9] dataset. We report PSNR, SSIM, LPIPS, and Eflow for the best-matched
instance with GT, as well as the average and variance across four instances. The variances marked as ∗ are reported with scaling by 10−5.

side akin to the front, causing visual anomalies. On the other
hand, emphasizing s2 results in increased diversity across
the generated samples. However, a fundamental trade-off
exists between these two aspects — quality and diversity —
making it challenging to optimize for both simultaneously.
Yet, by employing both s1 and s2 in tandem, we can achieve
a win-win scenario. This division allows us to precisely dis-
cern the impact of each guidance factor on the generation
process. By skillfully balancing these guiding principles, our
method becomes empowered to generate a rich and varied
array of images, exhibiting both multi-view coherence and
fidelity to the input view.

Qualitative comparison. Figure 3 provides a glimpse into
the capabilities and limitations of different novel-view syn-
thesis methods. Zero123 [19] frequently generates images
that lack coherence across multiple viewpoints. These syn-
thesized images often contain implausible variations, such
as alterations in the number of cymbals or trees based on
the view, or even changes in the shape of eyes. These incon-
sistencies underscore the struggle of Zero123 to maintain
coherence and realism across different perspectives, lead-
ing to discrepancies that compromise the overall quality of

multi-view synthesis. SyncDreamer [20] faces challenges
in preserving the expected visual similarity across different
viewpoints. The generated images often display deviations
in overall size, empty or missing regions, or distorted forms,
leading to an overall loss of visual completeness and integrity.
Instances where facial features are erased or distorted repre-
sent the difficulties SyncDreamer encounters in maintaining
the visual fidelity expected across diverse views. In stark
contrast, HarmonyView stands out for its ability to generate
diverse yet plausible multi-view images while preserving
geometric coherence across these views. Unlike its counter-
parts, HarmonyView maintains a harmonious relationship
between different views, ensuring the consistent appearance,
shapes, and elements of objects. In addition, HarmonyView
can extrapolate realistic frontal views from the rear-view
input image (see third sample). This further underscores the
versatility and robustness of HarmonyView. Overall, Har-
monyView is able to generate a diverse set of images while
maintaining a sense of realism and coherence across the
multiple views.

Statistical analysis. In Table 1, we conduct a compre-
hensive statistical analysis on the GSO [9] dataset, eval-
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Figure 4. Additional 3D reconstruction comparison. HarmonyView excels at generating high-fidelity 3D meshes that achieve precise
geometry with a realistic appearance while sidestepping common pitfalls for comprehensive and captivating reconstructions.

uating the performance of three methods: HarmonyView,
Zeor123 [19], and SyncDreamer [20]. We report PSNR,
SSIM, LPIPS, and Eflow for the best-matched instance with
ground truth, as well as the average and variance across four
instances. Upon comparison, HarmonyView demonstrates
superior performance across all metrics when compared to
Zeor123 and SyncDreamer. It attains the highest scores in
PSNR and SSIM, indicating better image quality in terms
of both fidelity and structural similarity when compared to
the ground truth. Moreover, HarmonyView also exhibits the
lowest LPIPS and Eflow scores, signifying reduced percep-
tual differences and flow errors when matched against the
ground truth. Interestingly, HarmonyView shows higher vari-
ability (indicated by larger variance values) across instances
compared to other methods. This variability might imply
that while HarmonyView generally performs well, its per-
formance might fluctuate more across different instances
or scenarios compared to the Zero123 and SyncDreamer.
Nevertheless, it is essential to note that this variability in
performance also reflects its diversity in samples. This could
imply that while HarmonyView showcases a broader range
of outputs, it still maintains a high level of image quality.

D.2. 3D Reconstruction

In Fig. 4, the results exemplify HarmonyView’s exceptional
quality compared to other methods evaluated for 3D recon-
struction. While contrasting with competing methods, it is
evident that these approaches encounter various challenges
in handling the reconstruction process. For instance, both

Point-E [25] and Shap-E [16] struggle significantly with in-
complete reconstructions, failing to capture the entirety of
the intended 3D shapes. This deficiency results in recon-
structions that lack certain crucial elements, undermining
the fidelity of the output. In the case of One-2-3-45 [18], the
method exhibits a tendency to produce ambiguous shapes,
failing to accurately represent the intended shape contours.
Furthermore, Zero123 [19] faces difficulties in capturing
fine elements within the reconstructed shapes, which di-
minishes the overall fidelity and detail level of the output.
SyncDremaer [20] also shows discontinuities or holes within
the generated 3D meshes. These imperfections detract from
the coherence and completeness of the reconstructed shape.
In contrast, HarmonyView produces high-quality 3D meshes
that achieve accurate geometry while maintaining a realistic
appearance. Its ability to circumvent the pitfalls experienced
by other methods speaks volumes about its capability to
generate comprehensive, detailed, and visually compelling
reconstructions.

E. Discussion
E.1. Limitations & Future Work

While HarmonyView demonstrates promising results in en-
hancing both visual consistency and novel-view diversity
in single-image 3D content generation, several limitations
warrant further investigation. Firstly, our multi-view diffu-
sion formulation somewhat mitigates inherent trade-offs be-
tween consistency and diversity to achieve a certain level



of Pareto optimality. However, the complete separation of
these aspects to eliminate the trade-off entirely remains a
challenging pursuit. Secondly, HarmonyView’s current focus
primarily revolves around object-centric scenes. This poses
limitations when dealing with complex scenarios involving
multiple interacting objects, varying scales, and intricate
geometries. Expanding the technique to encompass such di-
verse and intricate scenes demands innovative approaches
that account for object interactions, spatial relationships,
and contextual understanding within the scene. Moreover,
our current setting typically involves single objects with-
out backgrounds, simplifying the requirements for realism
and diversity. The ignorance of background significantly re-
duces the expectations of synthesizing diverse images. To
accommodate in-the-wild multi-object scenes with complex
backgrounds, HarmonyView requires the use of an external
background removal tool (e.g., CarveKit). Addressing these
limitations effectively presents ample opportunities for in-
novation and refinement within the field. Exploring these
avenues promises to advance the field towards more com-
prehensive and realistic 3D content generation from single
images.

E.2. Ethical Considerations

The advancements in one-image-to-3D bring forth several
ethical considerations that demand careful attention. One
key concern is the potential misuse of generated 3D content.
These advancements could be exploited to create deceptive
or misleading visual information, leading to misinformation
or even malicious activities like deepfakes, where fabricated
content is passed off as genuine, potentially causing harm,
misinformation, or manipulation. It is essential to establish
responsible usage guidelines and ethical standards to prevent
the abuse of this technology. Another critical concern is the
inherent bias within the training data, which might lead to
biased representations or unfair outcomes. Ensuring diverse
and representative training datasets and continuously moni-
toring and addressing biases are essential to mitigate such
risks. Moreover, the technology poses privacy implications,
as it could be used to reconstruct 3D models of objects and
scenes from any images. Images taken without consent or
from public spaces could be used to reconstruct detailed 3D
models, potentially violating personal privacy boundaries.
As such, it is crucial to implement appropriate safeguards
and obtain informed consent when working with images
containing personal information.
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