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Figure 1. Visualization of ablation study about ϕx.

A. Appendix

A.1. Introduction

In the supplementary material, we mainly introduce our hy-
perparameter settings of experiments in Sec. A.2. Then
more ablation studies are conducted in Sec. A.3. Finally,
we delve into the limitations of our proposed 4D-GS in
Sec. A.4.

A.2. Hyperparameter Settings

Our hyperparameters mainly follow the settings of 3D-
GS [8]. The basic resolution of our multi-resolution Hex-
Plane module R(i, j) is set to 64, which is upsampled by 2
and 4. The learning rate is set as 1.6 × 10−3, decayed to
1.6e − 4 at the end of training. The Gaussian deformation
decoder is a tiny MLP with a learning rate of 1.6 × 10−3

which decreases to 1.6 × 10−3. The batch size in training
is set to 1. The opacity reset operation in [8] is not used
as it does not bring evident benefit in most of our tested
scenes. Besides, we find that expanding the batch size will
indeed contribute to rendering quality but the training cost
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increases accordingly.
Different datasets are constructed under different captur-

ing settings. D-NeRF [14] is a synthesis dataset in which
each timestamp has only one single captured image follow-
ing the monocular setting. This dataset has no background
which is easy to train, and can reveal the upper bound of
our proposed framework. We change the pruning interval
to 8000 and only set a single upsampling rate of the multi-
resolution HexPlane Module R(i, j) as 2 because the struc-
ture information is relatively simple in this dataset. The
training iteration is set to 20000 and we stop 3D Gaussians
from growing at the iteration of 15000.

The DyNeRF dataset [9] includes 15 – 20 fixed camera
setups, so it’s easy to get the sfm [15] point in the first frame,
we utilize the dense point-cloud reconstruction and down-
sample it lower than 100k to avoid out of memory error.
Thanks to the efficient design of our 4D Gaussian splatting
framework and the tiny movement of all the scenes, only
14000 iterations are needed and we can get the high render-
ing quality images.

HyperNeRF’s dataset is captured with less than 2 cam-
eras in feed-forward settings. We change the upsampling
resolution up to [2, 4] and the hidden dim of the decoder into
256. Similar to other works [3, 13], we found that Gaussian
deformation fields always fall into the local minima that link
the correlation of motion between cameras and objects even
with static 3D Gaussian initialization. And we’re going to
reserve the splitting of the relationship in the future works.

A.3. More Ablation Studies

Position Deformation. We find that removing the output
of the position deformation head can also model the ob-
ject motion. It is mainly because leaving some 3D Gaus-
sians in the dynamic part, keeping them small in shape, and
then scaling them up at a certain timestamp can also model
the dynamic part. However, this approach can only model
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Figure 2. More visualization of composition in 4D Gaussians. (a) Composition with Punch and Standup. (b) Composition with Lego and
Trex. (c) Composition with Hellwarrior and Mutant. (d) Composition with Bouncingballs and Jumpingjacks.

Table 1. Perscene results of HyperNeRF’s vrig datasets [13] by different models.

Method 3D Printer Chicken Broom Banana

PSNR MS-SSIM PSNR MS-SSIM PSNR MS-SSIM PSNR MS-SSIM

Nerfies [12] 20.6 0.83 26.7 0.94 19.2 0.56 22.4 0.87
HyperNeRF [13] 20.0 0.59 26.9 0.94 19.3 0.59 23.3 0.90
TiNeuVox-B [3] 22.8 0.84 28.3 0.95 21.5 0.69 24.4 0.87
FFDNeRF [6] 22.8 0.84 28.0 0.94 21.9 0.71 24.3 0.86
3D-GS [8] 18.3 0.60 19.7 0.70 20.6 0.63 20.4 0.80
Ours 22.1 0.81 28.7 0.93 22.0 0.70 28.0 0.94
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Figure 3. Visualization of ablation study in ϕC and ϕα comparing
with TiNeuVox [3].

coarse object motion and lost potential for tracking. The
visualization is shown in Fig. 1.

Editing with 4D Gaussians. We provide more visualiza-
tion in editing with 4D Gaussians with Fig. 2. This work
only proposes a naive approach to transformation. It is
worth noting that when applying the rotation of the scenes,
3D Gaussian’s rotation quaternion q and scaling coefficient
s need to be considered. Meanwhile, some interpolation
methods should be applied to enlarge or reduce 4D Gaus-
sians.

Color and Opacity’s Deformation. When encountered
with fluid or non-rigid motion, we adopt another two out-
put MLP decoder ϕC , ϕα to compute the deformation of 3D
Gaussian’s color and opacity ∆C = ϕC(fd), ∆α = ϕα(fd).
Tab. 4 and Fig. 3 show the results in comparison with
TiNeuVox [3]. However, it is worth noting that model-
ing Gaussian color and opacity change may cause irrational
shape changes when rendering novel views. i.e. the Gaus-
sians on the surface should move with other Gaussians but
stay in the place and the color is changed, making the track-
ing difficult to achieve.

Spatial-temporal Structure Encoder. We have explored
why 4D-GS can achieve such a fast convergence speed and
rendering quality. As shown in Fig. 4, we visualize the
full features of R1 in bouncingballs. It’s explicit that in
the R1(x, y) plane, the spatial structure of the scenes is
encoded. Similarily, R1(x, z) and R1(y, z) also show dif-
ferent view structure features. Meanwhile, temporal voxel
grids R1(x, t), R1(y, t) and R1(z, t) also show the inte-
grated motion of the scenes, where large motions always
stand for explicit features. So, it seems that the proposed
HexPlane module encodes the features of spatial and tem-
poral information.

A.4. More Discussions

Monocular Dynamic Scene Reconstruction. In monoc-
ular settings, input data are sparse from both cameration
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Figure 4. More visualization of the HexPlane voxel grids R(i, j) in bouncing balls. (a)-(c), (e)-(f) stand for visualization of R1(i, j),
where grids resolution equals to 64×64.

Table 2. Per-scene results of DyNeRF’s [9] datasets.

Method Cut Beef Cook Spinach Sear Steak

PSNR SSIM PSNR SSIM PSNR SSIM

NeRFPlayer [16] 31.83 0.928 32.06 0.930 32.31 0.940
HexPlane [2] 32.71 0.985 31.86 0.983 32.09 0.986
KPlanes [4] 31.82 0.966 32.60 0.966 32.52 0.974
MixVoxels [17] 31.30 0.965 31.65 0.965 31.43 0.971
Ours 32.90 0.957 32.46 0.949 32.49 0.957

Method Flame Steak Flame Salmon Coffee Martini

PSNR SSIM PSNR SSIM PSNR SSIM

NeRFPlayer [16] 27.36 0.867 26.14 0.849 32.05 0.938
HexPlane [2] 31.92 0.988 29.26 0.980 - -
KPlanes [4] 32.39 0.970 30.44 0.953 29.99 0.953
MixVoxels [17] 31.21 0.970 29.92 0.945 29.36 0.946
Ours 32.51 0.954 29.20 0.917 27.34 0.905

pose and timestamp dimensions. This may cause the local
minima of overfitting with training images in some compli-
cated scenes. As shown in Fig. 5, though 4D-GS can render
relatively high quality in the training set, the strong overfit-
ting effects of the proposed model cause the failure of ren-
dering novel views. To solve the problem, more priors such

as depth supervision or optical flow may be needed.

Large Motion Modeling with Multi-Camera Settings.
In the DyNeRF [9]’s dataset, all the motion parts of the
scene are not very large and the multi-view camera setup
also provides a dense sampling of the scene. That is the



Table 3. Per-scene results of synthesis datasets.

Method Bouncing Balls Hellwarrior Hook Jumpingjacks

PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

3D-GS [8] 23.20 0.9591 0.0600 24.53 0.9336 0.0580 21.71 0.8876 0.1034 23.20 0.9591 0.0600
K-Planes[4] 40.05 0.9934 0.0322 24.58 0.9520 0.0824 28.12 0.9489 0.0662 31.11 0.9708 0.0468
HexPlane[2] 39.86 0.9915 0.0323 24.55 0.9443 0.0732 28.63 0.9572 0.0505 31.31 0.9729 0.0398
TiNeuVox[3] 40.23 0.9926 0.0416 27.10 0.9638 0.0768 28.63 0.9433 0.0636 33.49 0.9771 0.0408
Ours 40.62 0.9942 0.0155 28.71 0.9733 0.0369 32.73 0.9760 0.0272 35.42 0.9857 0.0128

Method Lego Mutant Standup Trex

PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

3D-GS [8] 23.06 0.9290 0.0642 20.64 0.9297 0.0828 21.91 0.9301 0.0785 21.93 0.9539 0.0487
K-Planes [4] 25.49 0.9483 0.0331 32.50 0.9713 0.0362 33.10 0.9793 0.0310 30.43 0.9737 0.0343
HexPlane [2] 25.10 0.9388 0.0437 33.67 0.9802 0.0261 34.40 0.9839 0.0204 30.67 0.9749 0.0273
TiNeuVox [3] 24.65 0.9063 0.0648 30.87 0.9607 0.0474 34.61 0.9797 0.0326 31.25 0.9666 0.0478
Ours 25.03 0.9376 0.0382 37.59 0.9880 0.0167 38.11 0.9898 0.0074 34.23 0.9850 0.0131

(a) Training View (b) Novel View 1 (c) Novel View 2

Figure 5. Novel view rendering results in the iPhone datasets [5].

(a) Ours (b) Ground Truth

Figure 6. Rendering results on sports dataset [7] also used in Dy-
namic3DGS [11].

Table 4. Ablation Study on ϕC and ϕα, comparing with TiNeu-
Vox [3] in Americano of HyperNeRF [13]’s dataset.

Method Americano

PSNR MS-SSIM

TiNeuVox-B [3] 28.4 0.96
Ours w/ ϕC ,ϕα 31.53 0.97
Ours 30.90 0.96

reason why 4D-GS can perform a relatively high rendering
quality. However, in large motion such as sports datasets [7]

(a) Broom (b) Teapot

Figure 7. Failure cases of modeling large motions and dramatic
scene changes. (a) The sudden motion of the broom makes op-
timization harder. (b) Teapots have large motion and a hand is
entering/leaving the scene.

used in [11], 4DGS cannot fit well within short times as
shown in Fig. 6. Online training [1, 11] or using information
from other views like [10, 18] could be a better approach to
solve the problem with multi-camera input.

Large Motion Modeling with Monocular Settings. 4D-
GS uses a deformation field network to model the motion of
3D Gaussians, which may fail in modeling large motions or
dramatic scene changes. This phenomenon is also observed
in previous NeRF-based methods [3, 9, 13, 14], producing



blurring results. Fig. 7 shows some failed samples. Explor-
ing more useful priors could be a promising future direction.
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