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A. Legal Issues
A.1. Copyright Infringement for Artificial

Intelligence-generated Content (AIGC)

In traditional copyright infringement cases, the initial pro-
cess of determining whether an image has been “ref-
erenced” in the creation of another image is relatively
straightforward. However, the subsequent legal judgment,
which involves quantifying the extent of similarity and de-
ciding if it amounts to infringement, presents more signif-
icant challenges. This necessitates an examination of sub-
stantial similarity aspects, including style and composition,
while also considering the originality of the work in ques-
tion and any authorized use. This stage poses challenges
due to the requirement for a nuanced understanding of the
intricate aspects of copyright law.

In the traditional context, particularly in the field of
painting, the acceptance of visual and comprehensible ev-
idence as a key element for legal decisions has evolved over
time. Once established, a high degree of similarity found in
such evidence often led to findings of infringement. For in-
stance, an artist was fined a huge amount of money for pla-
giarizing artworks11. In this case, visually similar paintings
serve as evidence of infringement, underscoring the signif-
icance of visual proof in traditional copyright cases. This
sets a precedent, highlighting the need for adapting simi-
lar methodologies to address the unique challenges in the
AIGC realm.

In the era of AIGC, the stark absence of widely-accepted
factual evidence, in contrast to traditional contexts, is ev-
ident. The intricate nature of AI algorithms complicates
the task of establishing direct references. This has led to
a significant shift in legal regulations, moving from focus-
ing primarily on direct infringement judgments to tackling
anti-unfair competition concerns. This transition is a re-
sponse to the lack of clear, visual, and easily interpretable
evidence, reflecting the adjustments current regulations are
undergoing to accommodate the nuances of AIGC12.

Addressing these complexities in AIGC demands the
cultivation of a widely-recognized factual understanding
of what constitutes a “reference.” Here, the importance
of robust copyright authentication tools becomes apparent.
These tools are crucial for not only establishing facts but

11https://www.caixinglobal.com/2023-10-25/chinese-artist-fined-
5-million-yuan-in-landmark-case-for-plagiarizing-foreign-work-
102120348.html

12https://digichina.stanford.edu/work/how-will-chinas-generative-ai-
regulations-shape-the-future-a-digichina-forum/

Need Preprocessing? Defense Accuracy Visualizability
MIA [8, 16] % Hard High Poor

Data Watermark [5, 34, 40] ! Uncertain Uncertain Moderate
Copyright Authentication % Hard High Strong

Table 5. Comparative Overview of Post-cautionary Copyright
Protection Methods. Bold text highlights advantageous features,
while plain text indicates areas where these features are less pro-
nounced.

also for making them visually comprehensible and pub-
licly acceptable. The recent lawsuit involving “Stable Dif-
fusion”13 brings to light the current reliance on visual evi-
dence in copyright lawsuits. It also, however, points to the
inadequacy of these methods due to the limited similarity
between AI-generated output images and the original train-
ing data. Our work with CGI-DM focuses on overcoming
this hurdle, offering a method to aid in substantiating in-
fringement claims with higher visual similarity.

In the short term, these copyright authentication tools of-
fer valuable assistance in current lawsuits against AIGC.
While they may not be crucial at this juncture, their role
in establishing necessary visual and comprehensible evi-
dence is significant as we adapt our legal frameworks to the
challenges posed by AIGC. In the long term, their impor-
tance grows, as establishing well-accepted facts becomes
paramount for the effective adjudication of AIGC-related
copyright issues. Tools like the proposed CGI-DM method
are increasingly vital in this extended context, which en-
able a shift in focus from merely contending with anti-unfair
competition to directly addressing copyright infringement.
This reorientation is vital for ensuring stronger protection of
the intellectual property rights of human artists, safeguard-
ing their work against the advancing tide of AIGC.

In conclusion, the development and acceptance of robust
validation tools are essential in shaping the future of copy-
right law enforcement in the context of AIGC. Reflecting on
the historical trajectory of how visual evidence gradually
became integral to legal judgment in traditional contexts,
we see a clear need for a similar evolution in the AIGC land-
scape. This historical perspective reinforces the importance
of societal acceptance in the legal adjudication process and
underscores the necessity of adapting these principles to the
emerging challenges of AIGC.

13https://www.hollywoodreporter.com/business/business-news/artists-
copyright-infringement-case-ai-art-generators-1235632929



A.2. More Discussion of Post-Cautionary Methods
for Copyright Protection

This section presents an in-depth analysis of various post-
caution methods for copyright protection. The summary
table in Tab. 5 illustrates that, in terms of preprocessing,
defense, accuracy, and visualizability, copyright authentica-
tion emerges as a superior choice.
Membership Inference Attack(MIA). There are only a
limited number of studies that explore the use of MIA for in-
fringement validation [22], possibly due to the inherent lim-
itations of this method. MIA primarily assesses the prob-
ability of a sample being part of the training dataset, but
its dependency on the model’s loss function results in out-
comes that are challenging to visualize. This limitation re-
stricts MIA’s use in legal settings, as it provides only binary
‘yes’ or ‘no’ outputs, lacking the detailed nuance needed
for legal evidence. Additionally, these binary outcomes, be-
ing dependent on the model’s loss function, deviate from
human visual perception, thus limiting their reliability and
applicability in the process of legal judgment.
Data Watermark. Data watermarking typically requires
preprocessing on training images [5, 34, 40]. This method’s
limitations include potential degradation in image quality
and the feasibility of watermark removal. Furthermore, its
effectiveness is predominantly aligned with current Digital
Models (DMs) and may not extend to future DMs or other
generative models. The intrinsic design of data watermark-
ing implies permanent security once implemented. Besides,
its performance under defense and its accuracy remain un-
certain under few-shot generation scenarios. The method
offers moderate visualizability since the embedded water-
mark can be discerned in the output, making it more com-
prehensible than MIA.
Copyright Authentication. At present, copyright authenti-
cation requires no preprocessing and demonstrates robust-
ness in defense scenarios, achieving high accuracy and
strong visualizability. These attributes make it an effec-
tive tool for providing legal support in cases of copyright
infringement.

It is noteworthy that the methods aforementioned do not
mutually exclude each other. In the long term, they could
potentially converge to form a comprehensive system for
validating copyright infringement.

B. Proof Details

B.1. Forward DDIM

It has recently been found that the diffusion process from
xT to x1 can be directly obtained by leveraging x0 [28]. The
reverse of this formulation can even lead to a predicted for-
ward process using the model weight of the diffusion model
[15]:

pθ(xt+1|xt) =N (xt+1;
√
αt+1fθ(xt, t)+√

1− αt+1ϵθ(xt, t), σ
2
t I),

(10)

where fθ(xt, t) is the predicted x0 defined as:fθ(xt, t) :=
xt−

√
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αt
.

B.2. Markov Chain Expanding and Expectation
Term Transformation
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We isolate a single term within the logarithm to simplify
the notation and defer the division of two probability terms
to a later step.
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The last equation holds true as the possibility function
p(x′

t+1|x′
t) is a Markov chain and is therefore indepen-

dent of any possibility that precedes time t. It is impor-
tant to note that, for a well-trained model on data points
x0 ∼ q(x0), it should effectively simulate the real prior dis-
tribution. In other words, pθ′(x′

t+1|x′
t) can be approximated

as q(x′
t+1|x′

t). Notably, this approximation only holds for
the fine-tuned model θ′ as it is the only model trained on im-
age x0, and it does not hold true for the pre-trained model
θ. Based on this approximation, we can modify our target
to:
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B.3. Approximation of the loss function

Given Equation (10) in Section 2.1, we can demonstrate
that the discrepancy between the initial image x0 and its
predicted counterpart x0 := fθ(xt, t) is indeed linked to
the disparity between the forecasted noise ϵθ(xt, t) at time
t with respect to the true noise εt:

x0 − fθ(xt, t)

=x0 −
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√
1− αtϵθ(xt, t)√

αt

=x0 −
√
αtx0 +

√
1− αtεt −

√
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αt

=

√
1− αt√
αt

(εt − ϵθ(xt, t)).

(14)

Based on this finding, we are now able to establish the
validity of the approximation presented in Equation (6):

∥x′
t+1 − µpθ(x′

t+1|x′
t)
∥2

=∥
√

αt+1

αt
x′
t +

√
1− αt+1

αt
εt+1 −

√
αt+1fθ(x

′
t, t)−√

1− αt+1ϵθ(x
′
t, t)∥2

=∥√αt+1x
′
0 +

√
(1− αt)

αt+1

αt
εt +

√
1
αt+1

αt
εt+1−

√
αt+1fθ(x

′
t, t)−

√
1− αt+1ϵθ(x

′
t, t)∥2

=∥√αt+1(x
′
0 − fθ(x

′
t, t))−

√
1− αt+1(ϵθ(x

′
t, t)− εt)+

(

√
(1− αt)

αt+1

αt
−
√
1− αt+1)εt +

√
1− αt+1

αt
εt+1∥2

≈∥√αt+1(x
′
0 − fθ(x

′
t, t))−

√
1− αt+1(ϵθ(x

′
t, t)− εt)∥2.

(15)
The final equation is valid due to the approximations of
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C. Direct Gradient Inversion (GI) Leads to
Zero-information Extracted Result

We observe that inverting the gradient solely based on the
fine-tuned model parameterized by θ′ resulted in a zero-
information-extracted outcome. Specifically, for the partial

Blockwise 
Masking(2)

Blockwise 
Masking(4)

Blockwise 
Masking(8)Blurring Masking Original  

Sample

Partial 
Representation

Recovered Sample  
by CGI-DM

Recovered Sample  
by Direct GI

Figure 5. Comparison of CGI-DM and direct GI under different
partial representations. We can find that direct GI does not recover
any semantic information of the images.

Removing Methods Acc. (C)↑ Acc. (D)↑ AUC (C)↑ AUC (D)↑
Blurring 0.65 0.80 0.69 0.86
Masking 0.72 0.73 0.76 0.75

Block-wise Masking(2) 0.93 0.97 0.97 0.99
Block-wise Masking(4) 0.93 0.96 0.97 0.98
Block-wise Masking(8) 0.94 0.97 0.97 1.00

Table 6. Influence of different approaches for removing par-
tial information on CGI-DM. All other parameters are set as the
same Tab. 2.

representation x0 of an image x0, we optimize it based on
the following target:

x′
0 = argmin

x′
0

pθ′(x′
1:T |x′

0)

≈ argmin
x′
0

Et,ϵt∼N (0,1)∥εt − ϵθ′(x′
t, t)∥2.

(17)

We omit the proof, as it closely resembles the proof men-
tioned in Section 3.2. We employ a similar optimization
method utilizing Monte Carlo Sampling and PGD attack, as
discussed in Section 3.3. As illustrated in Figure 5, the ex-
tracted images appear blurred, with no useful information
discernible. This is primarily attributed to the fact that the
diffusion model functions as a robust noise predictor, re-
sulting in the most probable image according to the model
being a smooth one with low information content, thus en-
abling the model to easily predict the introduced noise.

D. CGI-DM on Latent Diffusion Model (LDM)

The key distinction between the latent diffusion model
(LDM) model [23] and others lies in the occurrence of the
diffusion process within the latent space. Consequently, our
algorithm, CGI-DM, for LDM, closely resembles CGI-DM
for DM, with the exception that the partial information re-
moval and the consideration of predicted noise differences
are both based on the latent space of a LDM. Refer to Al-
gorithm 2 for more details.

E. Partial Information Removal in CGI-DM

Quantilized results are detailed in Tab. 6.
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(a) MIA methods under WikiArt Dataset
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(b) MIA methods under Dreambooth Dataset

Figure 6. Comparison of C-MIA and other MIA methods under two representative datasets under few-shot generation scenarios.

Algorithm 2 CGI-DM for LDMs

Input: Partial representation x0 of data x0, pre-trained
model parameter θ, fine-tuned model parameter θ′, num-
ber of Monte Carlo sampling steps N , step-wise length
α, encoder E , decoder D
Output: Recovered sample x

(N)
0

Initialize z0
(0) ← E(x0).

for i = 0 to N − 1 do
Sample t ∼ U(1, 1000)
Sample current noise εt ∼ N (0, 1)

∆δ(i+1) ← ∇
z
(i)
0
Ltar(θ, θ

′, z
(i)
0 , t, εt) in Eq. (7)

δ(i+1) ← α
∆

δ(i+1)

∥∆
δ(i+1)∥2

Clip δ(i+1) s.t. ∥z(i)0 + δ(i+1) − z
(0)
0 ∥2 ≤ ϵ

z
(i+1)
0 ← z

(i)
0 + δ(i+1)

end for
x
(N)
0 ← D(z(N)

0 ).

F. Removal of near-duplicate samples

Following the precedent set by previous research, we clas-
sify samples with a clip similarity exceeding 0.90 as near-
duplicates [1]. Within the WikiArt dataset, we eliminate
near-duplicate samples until only one copy remains. Given
that the utilization of any of these near-duplicate samples al-
ready constitutes a violation of the provided data, the pres-
ence of such samples in both the training dataset and other
datasets would result in an impractically low assessment of
the effectiveness of the infringement validation algorithm.

G. Conceptual Difference Exploiting for MIA
(C-MIA)

The definition of conceptual differences and the provided
proof in Sec. 3.2 isn’t limited to copyright authentication,
which has strong effects in MIA under few-shot genera-
tion scenarios. In detail, for pre-trained model θ, fine-tuned
mode θ′ and a given sample x, we leverage the KL diver-
gence of the probability of x between the two models:

DKL(pθ′(x1:T |x0)||pθ(x1:T |x0))

≈ Et,εt∼N (0,1) ∥εt − ϵθ(xt, t)∥2 − ∥εt − ϵθ′(xt, t)∥2︸ ︷︷ ︸
Ltar(θ,θ′,x0,t,εt)

.

(18)
We omit details for this approximation as it mainly fol-

lows the provided proof in Appendix B and Sec. 3. We
then utilize such divergence under one given time t and
sampled noise εt, denoted as Ltar(θ, θ

′, x0, t, εt), directly
for MIA. We name this method as “C-MIA”. We experi-
ment under both WikiArt dataset and Dreambooth dataset,
with settings aligned to the one mentioned in Tab. 1. Our
method is compared to two representative MIA methods:
Naive Attack (NA) [16] and Proximal Initialization Attack
(PIA) [16]. The performance comparison of these methods
is shown in Fig. 6, where we observe consistent outperfor-
mance by C-MIA across various time variable choices and
datasets.

H. Finetuning Details
The details of the parameters in the fine-tuning methods are
presented below. We use Num to represent the number of
images utilized for training
• Dreambooth (With Prior): We use the training script



Style Transferring: Wikiart Dataset
DreamBooth(w. prior loss) DreamBooth(w/o. prior loss) Lora

ASR(Clip)↑ ASR(Dino)↑ AUC(Clip)↑ AUC(Dino)↑ ASR(Clip)↑ ASR(Dino)↑ AUC(Clip)↑ AUC(Dino)↑ ASR(Clip)↑ ASR(Dino)↑ AUC(Clip)↑ AUC(Dino)↑
Text2img 0.72 0.77 0.68 0.75 0.74 0.80 0.71 0.80 0.71 0.74 0.63 0.70
inpainting 0.73 0.78 0.72 0.76 0.77 0.84 0.77 0.85 0.67 0.67 0.61 0.60
Img2img 0.87 0.94 0.88 0.95 0.91 0.95 0.92 0.97 0.77 0.80 0.76 0.80
CGI-DM 0.96 0.98 0.97 0.99 0.96 0.99 0.97 1.00 0.82 0.90 0.83 0.93

Subject-Driven Generation: DreamBooth Dataset
DreamBooth(w. prior loss) DreamBooth(w/o. prior loss) Lora

ASR(Clip)↑ ASR(Dino)↑ AUC(Clip)↑ AUC(Dino)↑ ASR(Clip)↑ ASR(Dino)↑ AUC(Clip)↑ AUC(Dino)↑ ASR(Clip)↑ ASR(Dino)↑ AUC(Clip)↑ AUC(Dino)↑
Text2img 0.81 0.89 0.72 0.85 0.82 0.92 0.78 0.90 0.77 0.90 0.68 0.85
inpainting 0.79 0.87 0.70 0.83 0.81 0.91 0.73 0.90 0.76 0.84 0.65 0.77
Img2img 0.92 0.95 0.78 0.94 0.92 0.98 0.90 0.98 0.81 0.93 0.73 0.90
CGI-DM 0.97 0.96 0.96 0.94 0.96 0.99 0.96 1.00 0.92 0.93 0.90 0.91

Table 7. Comparison of CGI-DM and other existing pipelines under separate thresholds. All other settings are fixed the same as in Tab. 1.
The experimental results demonstrate that CGI-DM also exhibits superior performance under separate thresholds.

Inference Steps/output img Number of output imgs/Input Img Overall inference steps Need backward? Time costs(min)/Input Img Overall Time costs(min)
Text2img 50 100 5000 % 10.36 207.30
Inpainting 50 100 5000 % 9.19 183.89
Img2img 35 100 3500 % 6.45 129.03
CGI-DM 1000 1 1000 ! 5.68 113.67

Table 8. Time costs comparison of CGI-DM with other methods. We experiment under Dreambooth (with prior loss) for one classes in
WikiArt-dataset for three times and report the mean time costs here.

provided by Diffusers14. Both the text encoder and the U-
Net are fine-tuned during the training process. By default,
the number of training steps is set to 50 × Num, with a
learning rate of 2×10−6. The batch size is set to 1, and the
number of class images used for computing the prior loss
is 50 × Num by default. The prior loss weight remains
fixed at 1.0. For the WikiArt dataset, the instance prompt
is “sks style”, and the class prompt is “art style”. For the
Dreambooth dataset, the instance prompt is “sks object”,
and the class prompt is “an object”.

• Dreambooth (No Prior): We use the training script pro-
vided by Diffusers14. All default parameters remain the
same as in the case of Dreambooth (With Prior), except
for the exclusion of the prior loss. Notably, this adjust-
ment will lead to training that closely resembles direct
fine-tuning.

• Lora: We use the training script provided by Diffusers15.
All default parameters remain consistent with the case in
Dreambooth (No Prior), with the exception of the learn-
ing rate and training steps, which are adjusted to 1×10−4

and to 100×Num, respectively.

I. Time costs

In this section, we present the time costs for overall valida-
tion and per-image validation for both our method and the
compared pipelines. As demonstrated in Table 8, the time
costs for the baseline methods are approximately equal to or
greater than ours under 100 × Num generated images, en-

14https://github.com/huggingface/diffusers/blob/main/examples/dreambooth/
train dreambooth.py

15https://github.com/huggingface/diffusers/blob/main/examples/dreambooth/
train dreambooth lora.py

suring a fair comparison where all methods require a similar
amount of time.

We further show the performance of best baseline meth-
ods (Img2img) with increasing number of generated images
in Table 7, where we can observe that 100 × Num is near
saturated.
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Figure 7. Trend of img2img baseline. Experimented under 5 sub-
sets of WikiArt dataset.

J. Experiment Result under Separate Thresh-
old

The default experiment setting employs a universal thresh-
old across various styles or objects. In this section, we
present results obtained with specific thresholds for each
style or object. As depicted in Tab. 7, CGI-DM also con-



sistently outperforms other methods in this configuration.

K. Visualization
We present visualization of CGI-DM in Fig. 8, Fig. 9 and
Fig. 10. The experimental setup aligns with the one de-
scribed in Tab. 1.

L. No-reference Visual Metrics
We show results16 in Tab. 9 with BRISQUE17 and CLIP-
IQA,18 where a similar trend can be observed. It can be
seen as a stricter measurement align with human vision and
can be helpful for overall evaluations.

Acc. (C)↑ AUC (C)↑ Acc. (BRISQUE)↑ AUC (BRISQUE)↑ Acc. (CLIP IQA)↑ AUC (CLIP IQA)↑
CGI-DM 0.90 0.96 0.66 0.69 0.73 0.79
Img2img 0.82 0.89 0.57 0.54 0.52 0.50
inpainting 0.67 0.71 0.55 0.55 0.52 0.50
Text2img 0.64 0.68 0.50 0.50 0.50 0.50

Table 9. CGI-DM v.s. baseline under no-reference metrics.

M. More dicussion with Inpainting Baseline
The standard approach to inpainting employs half masking
techniques. We also delve into inpainting methods that uti-
lize block-wise masking, akin to the CGI-DM process. We
include the results in Tab. 10. Experimental setup matches
Tab. 1 in line 402.

Acc. (C)↑ Acc. (D)↑ AUC (C)↑ AUC (D)↑
CGI-DM 0.90 0.95 0.96 0.98

inpainting with half masking 0.67 0.71 0.71 0.74
inpainting with block-wise masking (4) 0.71 0.80 0.77 0.87

Table 10. CGI-DM v.s. inpainting under block-wise masking(4).

16Experimental setup matches Tab. 1 in line 402.
17No-Reference Image Quality Assessment in the Spatial Domain

(2012).
18Exploring CLIP for Assessing the Look and Feel of Images (2022).
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Figure 8. Visualization of CGI-DM for membership and holdout data under 4 classes of WikiArt dataset. From left to right: Vincent
Willem van Gogh, Claude Monet, Pablo Ruiz Picasso and Paul Gauguin.
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Figure 9. Visualization of CGI-DM for membership and holdout data under 4 classes of Dreambooth dataset. From left to right: dog, vase,
backpack and monster toy.
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Figure 10. Visualization of CGI-DM for membership and holdout data from 20 different artists in WikiArt dataset under the default setting
in against Dreambooth (with prior loss). The figure is under high resolution and can be zoomed for more details.
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