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1. Training Details
To train our DSGNN, the overall loss function consists of
three parts, including task-specific loss Ltask, loss Lst for
the STGDS module and loss Lci for the CIGDS module,
which is formulated as:

L = αLtask + βLst + λLci (1)
where α, β and λ are weights to describe the relative impor-
tance of these three loss parts.

Ltask: The task-related loss Ltask jointly supervises the
model to generate the final saliency predictions, which is a
combination of segmentation loss, restoration loss, classifi-
cation loss and saliency ranking loss as:

Ltask = Lseg + Lrestor + Lcls + Lrk (2)

Within this framework, Lseg trains the model to predict
the shape predictions from the shape head. Specifically,
Lseg follows the same settings in Mask2former [2], consist-
ing of a combination of the binary cross-entropy loss and
the Dice loss [4]:

Lseg = Lbce(S, Ŝ) + Ldice(S, Ŝ) (3)
where S represents the shape predictions from the Shape
Head, and Ŝ denotes the shape ground truth of the saliency
objects in images.

Lrestor is applied for the restoration of texture predic-
tions from the texture head using the Mean Squared Error
(MSE) loss:

Lrestor = Lmse(T, T̂ ) (4)

where T represents the texture predictions from the Texture
Head, and Ŝ denotes the texture ground truth of the saliency
objects in images.

Lcls serves to discern whether predictions in class head
qualifies as a saliency object. Follow the Mask2former, we
employ the cross-entropy loss to this process:

Lcls = Lce(sc, ŝc) (5)
where sc is the classification predictions of all objects form
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the Class Head, and ŝc is the ground truth for classification,
including two states (0,1). Here, 0 signifies salient objects,
while 1 represents non-salient objects.

Lrk is guided by the saliency ranking loss [3] for rank-
ing the saliency level of predictions in the rank head. The
specific supervision process can be described as:

Lrk = Lrk(sr, ŝr) (6)
where sr denotes the saliency score predictions of all ob-
jects from the Rank Head, and ŝr represents the ground
truth for saliency. Among them, a higher numerical value
indicates a higher degree of saliency for the object. For in-
stance, in the ASSR dataset [5], the object with label ”5”
represents the most saliency level, whereas in the IRSR
dataset [3], the value ”8” signifies the highest saliency level
for a object.

Lst: Lst denotes the loss used for the STGDS module,
which is a combination of the differnece loss, the similarity
loss, and the reconstruction loss:

Lst = Lrecon + Ldiff + Lsim (7)
where Lrecon is the MSE loss, Ldiff utilizes the loss from
[1], and Lsim is the Pearson correlation loss, where Pearson
similarity can be expressed as:
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Here, the Pearson correlation loss is defined as:
Lpearson(x, y) = 1− Psim(x, y) (9)

where x, y ∈ R1×n represent two vectors used to measure
similarity.

To separate the feature representations as intended, we
apply a difference loss between V̂ s

p and V̂ s
c , as well as be-

tween V̂ t
p and V̂ t

c to encourage the divergence of saliency
degree-related and unrelated representations. The process
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can be formulated as:
Ldiff = Ldiff(V̂

s
p , V̂

s
c ) + Ldiff(V̂

t
p , V̂

t
c ) (10)

Additionally, a similarity loss is employed between V̂ s
c

and V̂ t
c for maintaining the similarity of the shared-domain

representations:
Lsim = Lpearson(V̂

s
c , V̂

t
c , 1) (11)

Finally, to prevent the model from producing trivial solu-
tions, we introduce a reconstruction loss between between
V̂ s
r and V̂ s, as well as between V̂ t

r and V̂ t:

Lrecon = Lmse(V̂
s
r , V̂

s) + Lmse(V̂
t
r , V̂

t) (12)

Lci: Lci is the loss function in the CIGDS module. To
ensure the successful separation of the desired shared rep-
resentations during this process, we also apply a similarity
loss in {V task

i }Bi to facilitate the learning of similar distri-
butions, as:

Lsim =

B∑
i,j=1,i̸=j

Lpearson(V̂
task
i , V̂ task

j , 1) (13)

At the same time, we employ a difference loss in
{V noise

i }Bi to compel distinct features between the saliency
degree-related and unrelated domain, ensuring the preven-
tion of trivial solutions, as:

Ldiff =
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i,j=1,i̸=j

Ldiff(V̂
noise
i , V̂ noise

j ) (14)

where Ldiff and Lsim have equivalent roles to the respective
parts in Lst.

Finally, Lci is the combination of Ldiff and Lsim:
Lci = Ldiff + Lsim (15)

2. Analysis of significant differences for
STGDS and CIGDS

To further validate the effectiveness of STGDS module and
CIGDS module, we conduct multiple sets of experiments
to analyze the significant differences between STGDS and
CIGDS modules. As illustrated in Fig. 1, we sequen-
tially recorded the results: Baseline results utilizing only
shape information, Baseline results employing texture in-
formation, results of the shape branch after incorporating
the STGDS module, results of the texture branch after in-
tegrating the STGDS module, results of merging shape and
texture branches after integrating the STGDS module, and
results after incorporating the CIGDS module. From the fig-
ure, it is evident that there are significant differences in the
results after the incorporation of the STGDS module com-
pared to the Baselines. This signifies that the enhancements
brought about by our module are consistent and reliable.
Moreover, upon the inclusion of the CIGDS module, there
are also significant differences compared to the results ob-
tained with the STGDS module. These experimental obser-

Figure 1. The significant analysis diagrams for STGDS and
CIGDS. From left to right, the results are presented for the base-
line using the shape information, baseline using texture infor-
mation, the results of the shape branch after incorporating the
STGDS module, the results of texture branch after incorporating
the STGDS module, the results of combining shape and texture
information, and the final results after adding the CIGDS module.
∗ denotes p < 0.05 while ∗∗ means p < 0.01.

vations indicate the stability of the enhancements brought
about by our modules.

3. Analysis of multi-dimensional edges

Our DSGNN starts with a pair of transformer decoders to
extract the shape queries and the texture queries of all ob-
jects, and then we use the STGDS to first encode these
queries as the shape graph and the texture graph, respec-
tively. As shown in Fig. 2, we present a detailed demon-
stration of the topology of the constructed graphs. Taking
the ASSR dataset [5] as an example, we built graphs for
each image with 5 nodes and 25 edges. Between any two
nodes, there are two reciprocally directed edges, and no-
tably, each node has a self-directed edge for updating its
self-relationship. In Fig. 3 and Fig. 4, we respectively visu-
alize the multi-dimensional edges before and after passing
through the shared GNN Encoder (GencC) in the STGDS
module. Fig. 3 depicts the visualization results of multi-
dimensional edges in GencT and GEncS, while Fig. 4 il-
lustrates the display of multi-dimensional edges in GencC



Figure 2. Details of the shape graph topology and the texture graph topology.

utilizing shape and texture information, respectively. It is
evident that there are notable differences among the edges
connecting different nodes (particularly nodes with differ-
ent saliency levels), indicating that our multi-dimensional
edges can capture diverse relationships between different
nodes.

Additionally, we highlight the differences between the
edges of the shape graph and the texture graph. Fig.
5a illustrates the absolute value differences of the multi-
dimensional edges between the GencT and GencS. The
clear differences in edges suggest that the relationships be-
tween targets’ shapes and textures are different. These
differences also indicate that although the shape and tex-
ture information of the targets are crucial for determining
their saliency, there still exist saliency-irrelevant noises in
them. Influenced by these noises, utilizing different in-
formation for inferring relationships between targets may
yield disparate outcomes. Ultimately, this adversely affects
the model’s ability to assess targets’ saliency degree. Fig.
5b displays the absolute value differences of the edges be-
tween the shape and texture graphs after passing through
the shared GNN encoder (GencC). It is apparent that af-
ter GencC processing, the relationships between the graphs
become more similar, indicating that our STGDS module
achieved its intended objective by extracting common rela-
tionships relevant to saliency from both the shape and tex-
ture graphs.
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(a) Visualization of multi-dimensional edges in GencT using texture information of all objects.

(b) Visualization of multi-dimensional edges in GEncS using shape information of all objects.

Figure 3. Visualization of multi-dimensional edges in GencT and GEncS.



(a) Visualization of multi-dimensional edges in GencC using texture information of all objects.

(b) Visualization of multi-dimensional edges in GencC using shape information of all objects.

Figure 4. Visualization of multi-dimensional edges in GencC.



(a) Absolute value differences of multi-dimensional edges between GencT and GencS.

(b) Absolute value differences of multi-dimensional edges in GencC.

Figure 5. Visualization of absolute difference of multi-dimensional edges.
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