
Supplementary material: Dynamic LiDAR Re-simulation using Compositional
Neural Fields

Hanfeng Wu1,2 Xingxing Zuo2,* Stefan Leutenegger2

Or Litany3,4 Konrad Schindler1 Shengyu Huang1,*

1 ETH Zurich 2 TU Munich 3 Technion 4 NVIDIA

In this supplementary material, we first provide addi-
tional information about the datasets for our evaluations and
implementation details of our proposed method in Sec. A.
Next, we present more qualitative and quantitative results
in Sec. B. Please also check the supplemental video for
more results showcasing our performance. Finally, we pro-
vide the complete derivations of the SDF-based volume ren-
dering for active sensor in Sec. C.

A. Datasets and implementation details

A.1. Datasets

Waymo Dynamic. For the Waymo Dynamic dataset, we
take them from 4 scenes of Waymo Open Dataset [5]. There
are multiple moving vehicles inside each scene. 50 consec-
utive frames are taken from each scene for our evaluation.
The vehicles are deemed as dynamic if the speed is > 1m/s.
in any of the 50 frames. The corresponding scene IDs on
Waymo Open Dataset for our selected scenes are shown as
follows:

Scene ID

Scene 1 1083056852838271990 4080 000 4100 000
Scene 2 13271285919570645382 5320 000 5340 000
Scene 3 10072140764565668044 4060 000 4080 000
Scene 4 10500357041547037089 1474 800 1494 800

Waymo Dynamic NVS. For the Waymo Dynamic NVS
dataset, we use the same 4 scenes as chosen in Waymo
Dynamic. We change the evaluation paradigm similar to
Waymo NVS [1] such that we first train the model on all 50
consecutive LiDAR frames then we synthesize 50 novel Li-
DAR frames with a sensor shift of 2 meters. We then train a
new model on the new 50 synthetic LiDAR scans and eval-
uate against the original 50 LiDAR scans.

A.2. Implementation details

DynNFL. Our model is implemented based on
nerfstudio[7]. For the static neural field, we sample
Ns = 512 points in total, with Nu = 256 uniformly
sampled points and Ni = 256 weighted sampled points
with 8 upsample steps. In each upsample step, 32 points are
sampled based on the weight distribution of the previously
sampled points. For each dynamic neural field, we sample
Ns = 128 points in total, with Nu = 64 uniformly
sampled points and Ni = 64 weighted sampled points
with 4 upsample steps. During training, we minimize
the loss function using the Adam [2] optimiser, with an
initial learning rate of 0.005. It linearly decays to 0.0005
towards the end of training. For the loss weights, we use
wζ = 3, we = 50, wdrop = 0.15, ws = 1, and weik = 0.3.
The batch size is 4096 and we train the model for 60000
iterations on a single RTX3090 GPU with float32 precision.

LiDARsim. We re-implement the LiDARsim [3] as one
of our baselines. First, we estimated point-wise normal vec-
tors by considering all points within a 20 cm radius ball
within the training set. Following this, we applied voxel
down-sampling [8], employing a 4 cm voxel size to recon-
struct individual disk surfels at each point. The surfel ori-
entation is defined based on the estimated normal vector.
During inference, we apply the ray-surfel intersections test
to determine the intersection points, thus the range and in-
tensity values. We select a fixed surfel radius of 6 cm for the
Waymo dataset and 12 cm for the Town dataset. To handle
dynamic vehicles, we follow LiDARsim [3] by aggregat-
ing the LiDAR points for each vehicle from all the train-
ing frames and representing them in the canonical frame of
each vehicle. During inference, we transform all the ag-
gregated vehicle points from their canonical frames to the
world frame and run ray-surfel intersection.

UniSim. We re-implement UniSim’s [10] rendering pro-
cess for LiDAR measurements by replacing our ray-drop
test-based neural fields composition method with its joint

1



t=39 t=42t=40 t=41

Figure 1. Qualitative results of LiDAR future frame simulation.

Method MAE ↓ MedAE ↓ CD ↓ MedAE Dyn ↓ Intensity RMSE ↓

LiDARsim [3] 448.4 55.1 77.0 38.7 0.13
Unisim [10] 115.1 9.7 33.5 24.3 0.19
Ours 72.9 3.8 22.9 14.0 0.07

Table 1. Evaluation of LiDAR NVS on Waymo Dynamic NVS.

rendering method. For every ray r(o,d), we begin by
conducting an intersection test with all dynamic bounding
boxes in the scene to identify the near and far limits. We
then uniformly sample 512 points along each ray, assign-
ing each point to either a dynamic neural field, if it falls
within a dynamic bounding box, or to the static neural field
otherwise. After sampling, we query the SDF and inten-
sity values from the relevant neural fields. Finally, using the
SDF-based volume rendering formula in Eq. 41 for active
sensors, we calculate the weights and perform the render-
ing. Note that we use the same neural field architecture as
in our method.

B. Additional results

B.1. Waymo Dynamic NVS evaluation

To demonstrate the robustness of our method, we extend the
evaluation paradigm to not only focus on interpolation per-
formance. We incorporate Waymo NVS evaluation intro-
duced in Sec. A to focus on close-loop novel view synthesis
performance. As illustrated in Tab. 1, our method outper-
forms LiDARsim and Unisim in all aspects.

B.2. Future frame generation

We trained DyNFL using the initial 40 frames and assessed
its performance against the last 10 frames. The results
are presented on the Waymo Dynamic dataset in Tab. 2
and Fig. 1. Unsurprisingly, the performance is compara-
tively inferior to the original setting (cf . Tab. 1), as it re-
quires extrapolation beyond the observed environment, and
thus again a (possibly learned) scene prior. Nevertheless
DyNFL continues to outperform LiDARsim. The degra-
dation on dynamic vehicles is marginal, attributable to our
precise pose interpolation and high-quality asset reconstruc-
tion. We will incorporate these findings in the final version.

Method MAE ↓ MedAE ↓ CD ↓ MedAE Dyn ↓

LiDARsim 333.3 25.3 67.8 13.0
Ours 81.8 8.6 26.4 9.3

Table 2. Results of future frame simulation.

B.3. Runtime analysis

DyNFL training takes ≈7 hours on average on a single RTX
3090 GPU with fp16 precision and 16 hours with fp32 pre-
vision, inference takes 2.2 seconds per LiDAR scan using
fp16 precision and 7 seconds using fp32 precision. The en-
visioned offline use for counterfactual re-simulation prior-
itizes realism over efficiency. Runtime can potentially be
improved for high-throughput applications by reducing ren-
dering complexity.

B.4. More qualitative results

In this section, we provide more qualitative results. In
Fig. 2, we showcase the 4 scenes from Waymo dynamic
dataset. We show additional scene editing results in Fig. 3.
Please check the supplementary videos for more qualitative
results.

C. SDF-based LiDAR volume rendering

In this section, we start by introducing the preliminary of
NeRF [4] following terminology as described in [6]. Then
we provide the full derivation of the SDF-based volume ren-
dering for active sensor.

C.1. Preliminary

Density. For a ray emitted from the origin o ∈ R3 to-
wards direction d ∈ R3, the density σζ at range ζ indicates
the likelihood of light interacting with particles at that point
rζ = o + ζd. This interaction can include absorption or
scattering of light. In passive sensing, density σ is a critical
factor in determining how much light from the scene’s illu-
mination is likely to reach the sensor after passing through
the medium.

Transmittance quantifies the likelihood of light traveling
through a given portion of the medium without being scat-
tered or absorbed. Density is closely tied to the transmit-
tance function T (ζ), which indicates the probability of a
ray traveling over the interval [0, ζ) without hitting any par-
ticles. Then the probability T (ζ+dζ) of not hitting a parti-
cle when taking a differential step dζ is equal to T (ζ), the
likelihood of the ray reaching ζ, times (1 − dζ · σ(ζ)), the
probability of not hitting anything during the step:

T (ζ + dζ) =T (ζ) · (1− dζ · σ(ζ)) (1)

2



Figure 2. Visualization of 4 selected scenes from Waymo Dynamic dataset. For each scene, we aggregate 50 frames. In the first row, points
are color-coded by the intensity values(0 0.25). In the second row, dynamic vehicles are painted as yellow.

O
rig

in
al

 S
ce

ne
Ed

ite
d 

Sc
en

e

Vehicle removal Trajectory manipulation Vehicle insertion 

Figure 3. Visualization of scene editing capabilities. We showcase 3 kinds of scene editing capabilities including vehicle removal(left),
trajectory manipulation(middle) and vehicle insertion(right). The first row represents the original scenes, the second row demonstrates the
scenes after editing. All points are color-coded by the intensity values(0 0.25).

T (ζ + dζ)− T (ζ)

dζ
≡T ′(ζ) = −T (ζ) · σ(ζ) . (2)

We solve the differential equation as follows:

T ′(ζ) = −T (ζ) · σ(ζ) (3)

T ′(ζ)

T (ζ)
= −σ(ζ) (4)∫ b

a

T ′(ζ)

T (ζ)
dζ = −

∫ b

a

σ(ζ) dζ (5)

log T (ζ)|ba = −
∫ b

a

σ(ζ) dζ (6)

T (a → b) ≡ T (b)

T (a)
= exp

(
−
∫ b

a

σ(ζ) dζ

)
. (7)

Hence, for a ray segment between ζ0 and ζ, transmittance
is given by:

Tζ0→ζ ≡ Tζ
Tζ0

= exp(−
∫ ζ

ζ0

σtdt) , (8)

which leads to following factorization of the transmittance:

Tζ = T0→ζ0 · Tζ0→ζ . (9)

Opacity is the complement of transmittance and repre-
sents the fraction of light that is either absorbed or scattered
in the medium. In a homogeneous medium with constant
density σ the opacity for a segment [ζj , ζj+1] of length ∆ζ
is given by αζj = 1− exp(−σ ·∆ζ)

3



C.2. SDF-based volume rendering for active sensor

NeuS[9] derives the opaque density based on the SDF
which is:

σζi =max

(
−dΦs

dζi
(f(ζi))

Φs(f(ζi))
, 0

)

=max

(
−(∇f(ζi) · v)ϕs(f(ζi))

Φs(f(ζi))
, 0

)
,

(10)

where Φs represents the Sigmoid function, f is the SDF
function that maps a range ζ to the SDF value of the point
position o+ d ∗ ζ. Note that the integral term is computed
by∫

−(∇f(ζ) · v)ϕs(f(ζ))

Φs(f(ζ))
dζ = − ln(Φs(f(ζ))) + C .

(11)
We extend the density-based volume rendering for active
sensor to SDF-based. Starting from the passive SDF-based
volume rendering [9], We substitute the density σ̃ with
opaque density in 10 and evaluate the radiant power inte-
grated from ray segment [a,b] with constant reflectivity ρa.

Consider the case where −(∇f(ζ) · v) > 0 within the
ray segment [a, b]. We have

P (a → b) =

∫ b

a

T 2(a → t) · σ̃t · ρ(t) dt (12)

= ρa

∫ b

a

T 2(a → t) · σ̃t dt (13)

= ρa

∫ b

a

exp
(
−
∫ t

a

2σ̃(u) du

)
· σ̃t dt (14)

= ρa

∫ b

a

exp
(
−2

∫ t

a

σ̃(u) du

)
· σ̃t dt (15)

= ρa

∫ b

a

exp
(
2 ln(Φs(f(u)))|ta

)
· σ̃t dt .

(16)

Let Ωx = Φs(f(x)), then

P (a → b) = ρa

∫ b

a

exp (2 ln(Ωt)− 2 ln(Ωa)) · σ̃t dt

(17)

= ρa

∫ b

a

Ωt
2

Ωa
2 · σ̃t dt (18)

=
ρa

Ωa
2

∫ b

a

Ωt
2 · σ̃t dt (19)

=
ρa

Ωa
2

∫ b

a

−dΦs

dt
(f(t)) · Φs(f(t)) dt (20)

=
ρa

Ωa
2 (−

1

2
Φs(f(t))

2

∣∣∣∣b
a

) (21)

=
ρa

Ωa
2 (

1

2
Φs(f(a))

2 − 1

2
Φs(f(b))

2
) (22)

=
Φs(f(a))

2 − Φs(f(b))
2

2Φs(f(a))
2 · ρa . (23)

Consider the case where −(∇f(ζ) · v) < 0 within the
ray segment [a, b]. Then

P (a → b) =

∫ b

a

T 2(a → t) · σ̃t · ρ(t) dt (24)

=

∫ b

a

T 2(a → t) · 0 · ρ(t) dt (25)

= 0 . (26)

Hence we conclude

P (a → b) = max

(
Φs(f(a))

2 − Φs(f(b))
2

2Φs(f(a))
2 , 0

)
· ρa .

(27)

Volume rendering of piecewise constant data. Combin-
ing the above, we can evaluate the volume rendering inte-
gral through a medium with piecewise constant reflectivity:

P (ζN+1) =

N∑
n=1

∫ ζn+1

ζn

T 2(ζ) · σ̃ζ · ρζn dζ (28)

=

N∑
n=1

∫ ζn+1

ζn

T 2
ζn · T 2(ζn� ζ) · σ̃ζ · ρζn dζ

(29)

=

N∑
n=1

T 2
ζn

∫ ζn+1

ζn

T 2(ζn → ζ) · σ̃ζ · ρζn dζ

(30)

=

N∑
n=1

T 2
ζnP (ζn → ζn+1) (31)

=

N∑
n=1

T 2
ζn · α̃ζn · ρζn , (32)

where

α̃ζn ≡ max

(
Φs(f(ζn)

2 − Φs(f(ζn+1))
2

2Φs(f(ζn))
2 , 0

)
. (33)

The discrete accumulated transmittance T can be calcu-
lated as follows:

Consider the case where −(∇f(ζ) ·v) > 0 in [ζn, ζn+1]:

Tζn =

n−1∏
i=1

(exp(−
∫ ζn+1

ζn

σ̃ζ dζ) (34)

4



=

n−1∏
i=1

(
Φs(f(ζn+1))

Φs(f(ζn))
) (35)

T 2
ζn =

n−1∏
i=1

(
Φs(f(ζn+1))

2

Φs(f(ζn))
2 ) (36)

=

n−1∏
i=1

(1− 2α̃ζn) . (37)

Consider the case where −(∇f(ζ) ·v) < 0 in [ζn, ζn+1]:

Tζn =

n−1∏
i=1

(exp(−
∫ ζn+1

ζn

σ̃ζ dζ) =

n−1∏
i=1

(1) (38)

T 2
ζn =

n−1∏
i=1

(12) =

n−1∏
i=1

(1− 2α̃ζn) . (39)

In conclusion, the radiant power can be reformulated as:

P (ζN+1) =

N∑
n=1

T 2
ζn · α̃ζn · ρζn , (40)

where T 2
ζn

=
∏n−1

i=1 (1− 2α̃ζi) .

Depth volume rendering of piecewise constant data
Note that α̃ζn ∈ [0, 0.5], T 2

ζn
∈ [0, 1],

∑N
n=1 T 2

ζn
· α̃ζn =

0.5, for depth volumetric rendering, we have

ζ =

N∑
n=1

2 · T 2
ζn · α̃ζn · ζn =

N∑
n=1

wn · ζn , (41)

where wn = 2α̃ζn ·
∏n−1

i=1 (1− 2α̃ζi) .

References
[1] Shengyu Huang, Zan Gojcic, Zian Wang, Francis Williams,

Yoni Kasten, Sanja Fidler, Konrad Schindler, and Or Litany.
Neural lidar fields for novel view synthesis. In ICCV, 2023.
1

[2] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 1

[3] Sivabalan Manivasagam, Shenlong Wang, Kelvin Wong,
Wenyuan Zeng, Mikita Sazanovich, Shuhan Tan, Bin Yang,
Wei-Chiu Ma, and Raquel Urtasun. LiDARsim: Realistic
LiDAR simulation by leveraging the real world. In CVPR,
2020. 1, 2

[4] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,
Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. NerF:
Representing scenes as neural radiance fields for view syn-
thesis. In ECCV, 2020. 2

[5] Pei Sun, Henrik Kretzschmar, Xerxes Dotiwalla, Aurelien
Chouard, Vijaysai Patnaik, Paul Tsui, James Guo, Yin Zhou,
Yuning Chai, Benjamin Caine, et al. Scalability in perception
for autonomous driving: Waymo open dataset. In CVPR,
2020. 1

[6] Andrea Tagliasacchi and Ben Mildenhall. Volume rendering
digest (for nerf). arXiv preprint arXiv:2209.02417, 2022. 2

[7] Matthew Tancik, Ethan Weber, Evonne Ng, Ruilong Li,
Brent Yi, Justin Kerr, Terrance Wang, Alexander Kristof-
fersen, Jake Austin, Kamyar Salahi, Abhik Ahuja, David
McAllister, and Angjoo Kanazawa. Nerfstudio: A modular
framework for neural radiance field development. In ACM
SIGGRAPH 2023 Conference Proceedings, 2023. 1

[8] Haotian Tang, Zhijian Liu, Xiuyu Li, Yujun Lin, and Song
Han. Torchsparse: Efficient point cloud inference engine.
Proceedings of Machine Learning and Systems, 4:302–315,
2022. 1

[9] Peng Wang, Lingjie Liu, Yuan Liu, Christian Theobalt, Taku
Komura, and Wenping Wang. Neus: Learning neural implicit
surfaces by volume rendering for multi-view reconstruction.
In NeurIPS, 2021. 4

[10] Ze Yang, Yun Chen, Jingkang Wang, Sivabalan Mani-
vasagam, Wei-Chiu Ma, Anqi Joyce Yang, and Raquel Ur-
tasun. Unisim: A neural closed-loop sensor simulator. In
CVPR, 2023. 1, 2

5


	. Datasets and implementation details
	. Datasets
	. Implementation details

	. Additional results
	. Waymo Dynamic NVS evaluation
	. Future frame generation
	. Runtime analysis
	. More qualitative results

	. SDF-based LiDAR volume rendering
	. Preliminary
	. SDF-based volume rendering for active sensor


