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Appendix

8. Proof of Theorem 1.
In the label space Y, let ỹ denote the noisy label, P̂ (·|x) and
P (·|x) denote the true posteriors and predicted posteriors,
respectively. P (ỹ|y) means the probability of y flipping to
ỹ as defined in the noise transition matrix. Here we regard
f ′(x) and h(x) as vectors, representing the noise-perturbed
posteriors of the victim model and the attack’s predictive
posteriors, respectively. Let L(a, b) and I(a, c) denote the
same classification loss function over the label b and the
vector c respectively, with a as the prediction vector. Note
that L(·, ·) and I(·, ·) can be loss function, such as cross-
entropy loss, mean absolute error, or other loss functions.

The classification risk of learning with noisy label and
learning with query-response pairs with perturbed posteriors
equals to Eq. (14) and Eq. (15), respectively,

R(h) = E(x,ỹ)[L(h(x), ỹ)], (14)

RT (h) = E(x,ỹ)[q(x, ỹ)·L(h(x), ỹ)], (15)

where q(x, ỹ) = P (ỹ|x)/P̂ (ỹ|x).
To prove this, we first rewrite the classification risk R(h)

as follows:

R(h) = E(x,ỹ)[L(h(x), ỹ)]

=
∑
ỹ∈Y

P (ỹ)E(x|ỹ)[L(h(x), ỹ)], (16)

where P (ỹ) can be further calculated by

P (ỹ) = E(x|ỹ)[
∑
y∈Y

P̂ (y|x)P (ỹ|y)]. (17)

By substituting Eq. (17) into Eq. (16), we obtain

R(h)=
∑
ỹ∈Y

E(x|ỹ)[
∑
y∈Y

P̂ (y|x)P (ỹ|y)·L(h(x), ỹ)]. (18)

Correspondingly, the classification risk RT (h) can be
expressed as:

RT (h) = E(x)[I(h(x), f ′(x))]

= E(x)[
∑
ỹ∈Y

P (ỹ|x)·L(h(x), ỹ)]

=
∑
ỹ∈Y

E(x|ỹ)[P (ỹ|x)·L(h(x), ỹ)]

=
∑
ỹ∈Y

E(x|ỹ)[
P (ỹ|x)·

∑
y∈Y P̂ (y|x)P (ỹ|y)∑

y∈Y P̂ (y|x)P (ỹ|y)
·L(h(x), ỹ)]

= E(x,ỹ)[q(x, ỹ)·L(h(x), ỹ)],

where q(x, ỹ) =
∑

y∈Y P (y|x)P (ỹ|y)∑
y∈Y P̂ (y|x)P (ỹ|y) =

P (ỹ|x)
P̂ (ỹ|x) . Here P̂ (ỹ|x)

and P (ỹ|x) represent the perturbed confidences of the true
and predicted posteriors on the noise label ỹ. The above
derivation from the penultimate step to the final step utilizes
the previously established equivalence between Equation
(18) and Equation (16). The term q(x, ỹ) can also be viewed
as an importance sampling weight between two noise distri-
butions - one generated from the true posteriors with noise
perturbation, and the other from the victim model posteriors
with noise perturbation.

Furthermore, it can be deduced that the more closely the
victim model’s predicted posteriors match the true posteriors,
the more this training process resembles learning with noisy
labels.

9. Tailored query sets description

In the distribution-aware attack scenario, we use tailored
query sets ImageNet-C10, ImageNet-C100 and ImageNet-
CUB200 that match the evaluation datasets. Specifically,
these tailored sets are constructed from ImageNet-1K by
manually selecting overlapping classes. ImageNet-C10,
ImageNet-C100 and ImageNet-CUB200 contain 183,763,
161,653 and 30,000 examples respectively. Notably,
ImageNet-C10 and ImageNet-C100 query sets exhibit a long-
tailed class distribution, as illustrated in the Figure 8.

2 5 3 1 9 8 6 0 4 7
Class

0k

20k

40k

60k

80k

C
ou

nt

ImageNet-C10

78 20 86 16 41 67 88
Class

0k

2k

5k

8k

10k

12k

15k

18k

C
ou

nt

ImageNet-C100

Figure 7. Class distribution of ImageNet-C10 and ImageNet-C100.

Since CUB200 is a fine-grained dataset on bird
species, ImageNet-CUB200 only contains a bird class from
ImageNet-1K.

10. Visualization of comparison results

For most defense budgets, our proposed method induces
lower classification accuracy in the attacker compared to
the best baseline methods, achieving the minimal trade-off
between attacker performance and defender utility.
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Figure 8. Visualization results of the baseline method at different
defense budgets across six attack scenarios.

11. Robustness across architectures
An important consideration for our defense is their robust-
ness when the attacker uses a different network than the
surrogate model. In Figure 9, we keep the ResNet34 surro-
gate and posterior perturbations but use DenseNet121 for the
attacker model. We find EMMA remains a strong defense
in this setting, with minimal decrease in performance slope,
indicating perturbations crafted on the surrogate transfer
effectively to the attacker network.

50 60 70 80 90
Defender Acc

20

40

60

80

At
ta

ck
er

 A
cc

CIFAR100 CIFAR10
EMMA+DenseNet121
EMMA
No Defense+DenseNet121
No Defense

55 60 65 70 75
Defender Acc

0

10

20

30

40

50

CIFAR10 CIFAR100

Figure 9. Robustness across architecture.

12. Data-free model stealing defense
In practical scenarios, it is common for companies to train
their models using proprietary datasets, which are not readily
available to potential attackers. In such cases, the attackers
may resort to data-free model stealing attacks, where they
attempt to extract the model’s knowledge without accessing
the actual dataset. Therefore, we also conduct experiments to
evaluate the effectiveness of our method EMMA in defending
against such attacks. In Table 4, the performance of EMMA
was evaluated against two data-free model stealing attacks:
DFMS [44] and MAZE [22] (with ∆Acc = 2). The results
demonstrate that EMMA can still effectively defend against
these data-free model stealing attacks.

Eval Data Victim Acc DFMS DFMS+EMMA MAZE MAZE+EMMA

CIFAR10 95.33 90.56 65.18 90.23 73.18
CIFAR100 75.96 67.83 39.53 69.37 48.09
CUB200 81.44 64.15 35.70 68.92 39.91

Table 4. Attacker accuracy (%) with no defense and with EMMA

defense.

13. Extension to foundation model defense
To extend our method to other foundation models like image
encoder, we first replace the to-be-optimized matrix with a
trainable adapter network (MLP), that transforms the orig-
inal outputting feature embedding to a perturbed one, then
modify the attacker and defender objective functions based
on similarity loss, and finally perform alternate optimiza-
tion to obtain the optimized MLP. To validate our extended
method’s effectiveness, we took CSTEAL [45] as a baseline
and followed its experimental setup and pipeline. The results
in Table 5 show EMMA still works and effectively defends
against stealing attacks by slightly sacrificing victim model
performance.

Victim CSTEAL Victim+EMMA CSTEAL+EMMA

F-MNIST 83.81±0.12 68.02±0.20 81.26±0.31 56.14±0.52
CIFAR10 88.47±0.19 84.29±0.13 85.24±0.70 71.81±0.35

STL10 77.61±0.39 72.10±0.14 74.09±1.21 60.03±0.82

Table 5. Accuracy (%) of victim and attacker on downstream
classification.


