
General Object Foundation Mode l for Images and Videos at Scale
Supplemental Material

In this supplementary material, we first provide more
detailed information on data usage and model training in
Sec 1. Subsequently, in Sec 2, we supplement additional
zero-shot and fine-tuning results on classic object-level
video tasks, such as VOS and RVOS. In Sec 3, we provide
ablation studies on model architecture design, data utiliza-
tion, and data scaling. In Sec 4, detailed zero-shot experi-
mental results on the ODinW [11] benchmark are provided
to validate the transferability of GLEE to various real-world
tasks. Finally, in Sec 5, we showcase the results in interac-
tive segmentation and tracking for images and videos.

1. Datasets and Implementation Details
Data Preparation. To ensure the generalization of GLEE
as an object-level foundation model, we conduct joint
training using a substantial amount of data with region-
level annotations from both images and videos. Exist-
ing datasets exhibit variations in annotation granularity:
detection datasets such as Objects365 [28] and OpenIm-
ages [10] provide bounding boxes and category names;
COCO [17] and LVIS [7] offer more detailed mask anno-
tations; RefCOCO [22, 40] and Visual Genome [9] include
comprehensive object descriptions. Furthermore, video
datasets [25, 27, 31, 34, 35, 37] contribute to the temporal
consistency of models, and open-world data [8, 31] enrich
the annotations with class-agnostic object information. We
extracted subsets of 500,000 and 2,000,000 images from the
SA1B [8] dataset for joint training in stage 2 and scale-up
training respectively. To ensure that objects from SA1B are
at the object-level rather than the part-level, we apply mask
IoU based NMS and use area as NMS score to eliminate
part-level object annotations. For SA1B and UVO data, we
set the category name for each object to be ’object’ and train
in instance segmentation paradigm. For GRIT [24] data, we
extract 5,000,000 samples for scale-up training to enhance
the richness of object descriptions. A comprehensive list
of the datasets we utilized, along with their respective sizes
and annotation granularities, is presented in Table 1.

Proportions of datasets used. We balance the overall
dataset proportion by annotation types (category: descrip-
tion: class-agnostic=7:5:3) due to extreme size imbalances
among training datasets, and we reduce the inclusion of

Sizes Annotations

dataset images objects semantic box mask track id

Detection Data
Objects365 [28] 1817287 26563198 category ✓ - -
OpenImages [10] 1743042 14610091 category ✓ - -
LVIS [7] 100170 1270141 category ✓ ✓ -
COCO [17] 118287 860001 category ✓ ✓ -
BDD [39] 69863 1274792 category ✓ ✓ -
Grounding Data
RefCOCO [40] 16994 42404 description ✓ ✓ -
RefCOCOg [22] 21899 42226 description ✓ ✓ -
RefCOCO+ [40] 16992 42278 description ✓ ✓ -
VisualGenome [9] 77396 3596689 description ✓ - -
GRIT [24] 5117307 9090607 description ✓ - -
OpenWorld Data
UVO [31] 16923 157624 - ✓ ✓ -
SA1B [8] 2147712 99427126 - ✓ ✓ -
Video Data
YTVIS19 [37] 61845 97110 category ✓ ✓ ✓
YTVIS21 [34] 90160 175384 category ✓ ✓ ✓
OVIS [25] 42149 206092 category ✓ ✓ ✓
UVO-dense [31] 45270 657990 - ✓ ✓ ✓
VOS [35] 94588 156310 - ✓ ✓ ✓
RefVOS [27] 93857 159961 description ✓ ✓ ✓

Table 1. The tasks GLEE learns to complete and the datasets used
in training.

video frames to ensure they only provide supplementary
categories. As some studies [20] have found, adding certain
datasets to the mix can result in negative downstream per-
formance; we too observed that the balance of data ratios
affects final outcomes. For COCO, GLEE’s performance
remains stable regardless of ratio adjustments, but for LVIS
and RefCOCO, increasing their proportions can boost per-
formance on those datasets. However, joint-training may
also lead to lower performance on RefCOCO but improve
LVIS compared to task-specific training. Despite this, our
unified training objective significantly reduces this effect
and aims for global optimality. Resource constraints pre-
vent us from confirming the absolute optimality of our mix
ratios, but we ensure that versatility and performance stay
competitive with state-of-the-art.

Model and Training Details. Following the image
backbone, text encoder, and visual prompter, we incorpo-
rate a 6-layer deformable transformer encoder and a 9-
layer decoder to serve as our Object Decoder following
MaskDINO [14]. We adopt 300 object queries, query de-
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Datasets OpenImages Objects365 LVIS VisualGenome COCO RefCOCO-mixed SA1B UVO-frame BDD YTVIS19 YTVIS21 OVIS Ref-YTBVOS

Ratio 1.5 1.5 1.5 2 1.5 2.5 2.5 0.2 0.15 0.3 0.3 0.3 0.3

Table 2. The data sampling ratios during the joint-training of stage 2. RefCOCO-mixed refers to the mixed dataset of RefCOCO [40],
RefCOCO+ [40], RefCOCOg [22], and the last four video datasets are treated as independent image data for training.

backbone GLEE

name Pre-trained Top1 Acc Params(M) FLOPs(T) FPS(A100)

Lite ResNet-50 ImageNet-1K 76.0 127.27 1.17 7.6
Plus Swin-Large ImageNet-22K 87.3 295.53 2.47 4.2
Pro EVA02-Large Merged-38M 90.0 399.60 7.25 1.5

Table 3. Comparison of backbones and GLEE models. ‘Top1 Acc’ refers to the accuracy of the backbone on ImageNet-1K classification
task, the FLOPs and FPS are test on COCO val 2017 with an input resolution of 10242 for Lite/Plus and 15362 for Pro.

Method YT-VOS 2018 val [35] MOSE val [4]

G Js Fs Ju Fu J&F J F

M
em

or
y STM [23] 79.4 79.7 84.2 72.8 80.9 - - -

SWEM [18] 82.8 82.4 86.9 77.1 85.0 50.9 46.8 64.9
STCN [3] 83.0 81.9 86.5 77.9 85.7 50.8 46.6 55.0
XMem [2] 86.1 85.1 89.8 80.3 89.2 57.6 53.3 62.0

N
on

-M
em

or
y

SiamMask [30] 52.8 60.2 58.2 45.1 47.7 - - -
Siam R-CNN [29] 73.2 73.5 - 66.2 - - - -
TVOS [41] 67.8 67.1 69.4 63.0 71.6 - - -
FRTM [26] 72.1 72.3 76.2 65.9 74.1 - - -
UNINEXT-R50 [36] 77.0 76.8 81.0 70.8 79.4 - - -
UNINEXT-L [36] 78.1 79.1 83.5 71.0 78.9 - - -
UNINEXT-H [36] 78.6 79.9 84.9 70.6 79.2 - - -
GLEE-Lite 80.4 80.2 85.5 74.3 81.4 56.1 51.8 60.4

Table 4. Performance comparison of our GLEE on video object
segmentation tasks.

noising, and hybrid matching to accelerate convergence and
improve performance. During the pretraining phase of stage
1, we sample data from Objects365 and OpenImages in a
1:1 ratio, with the batch size of 128 for 500,000 training
iterations. Moving to stage 2, we train GLEE for 500,000
iterations on all image-level data jointly according to the ra-
tios outlined in Table 2. For the scale-up training, we set the
sampling ratios for SA1B and GRIT to 5.0 in Table 2, and
train for an extra 500,000 iterations. We used AdamW [19]
optimizer with base learning rate of 1 × 10−4, and weight
decay of 0.05, learning rate is decayed at the 400,000 itera-
tions by a factor of 0.1. Learning rates of the image back-
bone and text encoder are multiplied by a factor of 0.1. For
the ResNet-50 backbone and Swin backbone, we use scale
augmentation [33], resizing the input images such that the
shortest side is at least 480 and at most 800 pixels while the
longest at most 1333. For EVA02-L backbone, we use the
large-scale jittering (LSJ) [6] augmentation with a random
scale sampled from range 0.1 to 2.0 followed by a fixed size

crop to 1536×1536. For the Lite, Plus, and Pro models,
each was trained for 3, 5, and 7 days respectively for each
pretraining, joint-training, and scale-up stages. We select
three backbones based on capacity to construct GLEE with
expected performance of Lite < Plus < Pro. Inference cost,
sizes, FLOPs are listed in Table 3.

2. Transfer to Video Tasks

To substantiate the effectiveness of GLEE across diverse
object-level video tasks, we present the performance on
VOS and RVOS tasks in Table 4 and Table 6 respectively.

VOS. Video object segmentation (VOS) aims at seg-
menting a particular object throughout the entire video
clip sequence. We evaluate GLEE on semi-supervised
VOS [1] that gives the first-frame mask of the target ob-
ject on YouTube-VOS 2018 [35] and MOSE [4]. Given
the first-frame mask of the target object, we first crop
the prompt square area from RGB image and send it to
the image backbone to obtain the visual prompt feature
of the corresponding area, and send it to the early fu-
sion module before the Transformer encoder. Then we
sample fine-grained visual embeddings from the pixel em-
bedding map Mp inside the given mask area and make
them interacted with object queries through self-attention
module in the Transformer decoder layer. We conduct
fine-tuning of GLEE-Lite jointly on YouTube-VOS [35],
YTVIS2019 [37], YTVIS2021 [34], OVIS [25], and UVO-
video [31] for 40,000 iterations. The evaluation is per-
formed on YouTube-VOS and MOSE, as shown in the Ta-
ble 4. It is noteworthy that semi-supervised VOS is almost
dominated by space-time memory networks [2, 3, 18, 23]
which construct a memory bank for each object in the video.
GLEE achieves the best results among all non-memory-
based methods on YouTube-VOS and even demonstrating
competitive results compared to memory-based methods on
the more challenging MOSE dataset.



GLEE-Lite
COCO RefCOCO ODinW13 TAO BURST YTVIS OVIS

APbox P@0.5 Avg.AP TETA HOTA AP AP

CLIP-frozen 51.6 81.8 41.4 36.2 22.6 51.0 24.2
CLIP-unfrozen 52.6 84.1 37.2 35.8 21.9 51.8 24.1
CLIP-distillation (ours) 52.8 84.5 41.5 36.4 24.9 52.2 24.7
w/o video frames 53.0 84.9 40.0 35.0 22.9 39.0 17.0

Table 5. Ablation studies on text encoder and video frame data, all results were obtained directly after joint training without any fine-tuning.
Higher metrics indicate better performance.

Method Backbone J&F J F
CMSA [38]

ResNet-50

36.4 34.8 38.1
YOFO [12] 48.6 47.5 49.7
ReferFormer [32] 58.7 57.4 60.1
UNINEXT [36] 61.2 59.3 63.0

PMINet + CFBI [5] Ensemble 54.2 53.0 55.5
CITD [16] 61.4 60.0 62.7

ReferFormer [32] Video-Swin-B 64.9 62.8 67.0
SOC [21] 67.3 65.3 69.3

UNINEXT [36] ConvNext-L 66.2 64.0 68.4
UNINEXT [36] ViT-H 70.1 67.6 72.7
GLEE-Plus Swin-L 67.7 65.6 69.7
GLEE-Pro EVA02-L 70.6 68.2 72.9

Table 6. Performance comparison of our GLEE on Ref-YouTube-
VOS task.

RVOS. Referring Video Object Segmentation (R-VOS)
aims at finding objects matched with the given language ex-
pressions in a given video and segment them. Ref-YouTube-
VOS [27] is a popular R-VOS benchmarks, which are con-
structed by introducing language expressions for the ob-
jects in the original YouTube-VOS [35] dataset. As same
as semi-supervised VOS, region similarity J , contour ac-
curacy F , and the averaged score J&F are adopted as the
metrics. Given an object expression and a video, we send
the description into the text encoder, select the object query
with the highest confidence score and compute its mask.
Additionally, we introduce temporal consistency by adding
the similarity between the 300 object queries of the cur-
rent frame and the object query selected in the previous
frame to the current confidence score. We directly evaluate
the GLEE trained from stage 2 on Ref-YouTube-VOS. As
shown in Table 6, GLEE outperforms all previous R-VOS
approaches and unified method.

3. Abaltion Study

In this section, we first conduct ablation experiments and
discussions on certain model design structures: distilling
knowledge from CLIP, using contrastive loss, and extracting
visual prompt embeddings twice. Then, we explore the use
of data and the effects of data scaling.

3.1. Model Designs

We conducted ablation studies by training GLEE-Lite for
340,000 steps on half the joint data to assess the effects
of the CLIP text encoder and video-as-image data usage.
There are three approaches to utilizing the CLIP text en-
coder: using a frozen pretrained CLIP text encoder, de-
noted as CLIP-frozen; using a pretrained CLIP text en-
coder with updatable weights during training, denoted as
CLIP-unfrozen; and employing two pretrained CLIP text
encoders, one frozen as a teacher model and the other un-
frozen as a student model, denoted as CLIP-distillation. The
text embeddings from student model are employed to query
objects in images, while the teacher model generates a stan-
dard text embedding. The student’s predictions are then
aligned with the teacher’s through an L1 loss to ensure the
student’s text embeddings remain within the CLIP space.
In this setting, we also compared the effect of removing
image data from the VIS dataset in our joint-dataset and
reported the performance of these four settings on COCO,
RefCOCO, ODinW13, TAO, BURST, YTVIS19, and OVIS
tasks in Table 5. It can be seen that unfreezing the text
encoder reduces zero-shot performance on ODinW, indi-
cating a decrease in downstream task generalization, while
a frozen encoder has difficulty with region-level descrip-
tion discernment, resulting in lower performance on REC
tasks such as RefCOCO. Distillation balances both, retain-
ing their advantages. In addition, not using video frames
as images has little impact on zero-shot video tasks (TAO,
BURST) but reduces performance on YTVIS and OVIS,
thus we add video frames to improve data diversity.

Contrastive loss is only employed during VIS task
(OVIS) fine-tuning to improve tracking. Its omission re-
sults a decrease in AP from 32.3 → 26.7 on OVIS, demon-
strating its significant impact on tracking in complex scenes.
Extracting visual prompt twice is designed to provide finer-
grained guidance for video object segmentation, removing
the first extraction (early-fusion) leads to a drop in YT-VOS
2018 performance from 80.4 → 60.1.

3.2. Data Scaling

We conducted experiments to investigate the impact of
training data scale on zero-shot performance across vari-
ous tasks. To this end, we trained GLEE-Pro with 10%,
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Figure 1. Data scaling. The performance of GLEE-Pro after train-
ing on 10%, 20%, 50%, 100% of the total data on TAO, BURST,
OVIS, YTVIS19. Increased scale of training data result in en-
hanced zero-shot performance across diverse downstream tasks.

20%, 50%, 100% of the training data to evaluate the perfor-
mance on zero-shot transfer tasks, including TAO, BURST,
OVIS, and YTVIS as illustrated in the Figure 1. Our data
scaling experiments reveal that increased sizes of training
datasets result in enhanced zero-shot performance across di-
verse downstream tasks. This outcome implies that larger
pre-training datasets are a valuable investment, offering a
more effective and adaptable basis for a broad spectrum of
downstream tasks. Thanks to the unified training approach
of GLEE, we can efficiently incorporate any manually or
automatically annotated data into our training process to
achieve enhanced generalization capabilities.

4. Object Detection in the Wild
To evaluate generalization of GLEE on diverse real-world
tasks, we conducted additional experiments on the “Object
Detection in the Wild” (ODinW) benchmark [11], which is
a suite of datasets covering a wide range of domains. We re-
port the average mAP on the subset of 13 ODinW detection
datasets introduced in [15], and report the per-dataset per-
formance in a zero-shot manner, as shown in Table 8. GLEE
performs better than GLIP [15] on the average of 13 pub-
lic datasets, showcasing its robust generalization capability.
Furthermore, it is evident that by introducing automatically
labeled data at a low cost for scaling up the training data, the
zero-shot capabilities can be further enhanced, this reveals
that GLEE has greater potential through scale-up.

To further validate transferability of GLEE on diverse
real-world detection tasks, we assess its few-shot trans-
fer ability on the ODinW [11]. We vary the amount of
task-specific annotated data from X-shot, providing at least

X examples per category, to using all the available data
in the training set, following the procedure established
by GLIP [15]. We fine-tune the models on the provided
data using the same hyper-parameters across all models
in a full-model tuning regime. For manually designed
prompts, we revise the category names for the two datasets
(“Cottontail-Rabbit” to “rabbit” and “Cow/Chanterelle” to
“Cow/Chanterelle mushroom”) to provide language guid-
ance. Models train with a batch size of 4 and a learning
rate of 1× 10−4, undergoing 200, 300, 400, 600, and 2000
iterations for the 1, 3, 5, 10, and ALL shot splits, respec-
tively. The optimal model is selected based on the validation
split for each train/val split. For each few-shot setting, we
train the models three times using different random seeds
for train/val splits, and the average score and standard devi-
ation on the test split are reported, as shown in the Table 9.

Method Point Box Point (ffn) Box (ffn)

SAM-B 52.0 74.9 - -
SAM-L 56.6 77.2 - -
Semantic-SAM (T) 54.5 - - -
Semantic-SAM (L) 57.0 - - -
GLEE-Lite 62.2 72.8 62.6 72.8
GLEE-Pro 64.7 72.9 64.8 73.1

Table 7. Promptable segmentation results.

5. Interactive Segmentation and Tracking
As described in Sec 2, GLEE achieves interactive segmen-
tation and tracking by introducing a visual prompt. Send-
ing points, boxes, or scribbles along with the image to
the model enables the segmentation of specified objects.
Moreover, by feeding the mask from the previous frame
and its corresponding prompt feature into early fusion and
self-attention, GLEE performs segmentation in the current
frame based on the segmentation results from the previous
frame. The features of objects in the previous frame serve
as referring features at this point. As illustrated in the Fig-
ure 2, we showcase the interactive segmentation results of
different prompts on images and videos.

As shown in the Table 7, we compared the 1-click mIoU
for interactive segmentation on COCO between SAM [8]
and Semantic-SAM [13]. As introduced in Method, we em-
poly a FFN to predict confidence scores to identify the most
confident object query in interactive segmentation. Com-
pared to calculating scores based on the similarity with the
‘object’ text prompt, the FFN provides more stable results
by avoiding the influence of text prompts.



Model PascalVOC AerialDrone Aquarium Rabbits EgoHands Mushrooms Packages Raccoon Shellfish Vehicles Pistols Pothole Thermal Avg

GLIP-T 56.2 12.5 18.4 70.2 50.0 73.8 72.3 57.8 26.3 56.0 49.6 17.7 44.1 46.5
GLIP-L 61.7 7.1 26.9 75.0 45.5 49.0 62.8 63.3 68.9 57.3 68.6 25.7 66.0 52.1
GLEE-Lite 61.7 7.9 23.2 72.6 41.9 51.6 32.9 51.1 35.0 59.4 45.6 21.8 56.9 43.2
GLEE-Lite-Scale 61.2 5.0 23.9 71.9 46.2 57.8 25.6 56.8 33.1 60.6 57.1 25.3 52.5 44.4
GLEE-Plus 67.8 10.8 38.3 76.1 47.4 19.2 29.4 63.8 66.7 63.8 62.6 15.3 66.5 48.3
GLEE-Plus-Scale 67.5 12.1 39.7 75.8 50.3 41.1 42.4 66.4 64.0 62.8 61.8 17.5 63.8 51.2
GLEE-Pro 68.9 16.5 37.6 77.2 23.3 40.1 44.7 68.2 66.2 66.1 63.2 18.1 65.8 50.5
GLEE-Pro-Scale 69.1 13.7 34.7 75.6 38.9 57.8 50.6 65.6 62.7 67.3 69.0 30.7 59.1 53.4

Table 8. Zero-shot performance on 13 ODinW datasets.

Model Shot Tune PascalVOC AerialDrone Aquarium Rabbits EgoHands Mushrooms Packages Raccoon Shellfish Vehicles Pistols Pothole Thermal Avg

DyHead COCO 1 Full 31.7±3.1 14.3±2.4 13.1±2.0 63.6±1.4 40.9±7.0 67.0±3.6 34.6±12.1 45.9±3.8 10.8±5.0 34.0±3.3 12.0±10.4 6.1±1.3 40.9±7.4 31.9±3.3

DyHead COCO 3 Full 44.1±0.7 19.2±3.0 22.6±1.3 64.8±1.7 54.4±2.5 78.9±1.3 61.6±10.3 50.0±2.1 20.8±3.5 44.9±1.9 34.4±11.1 20.6±2.4 57.9±2.3 44.2±0.3

DyHead COCO 5 Full 44.9±1.5 22.2±3.0 31.7±1.0 65.2±1.5 55.6±3.7 78.7±3.9 50.1±13.7 48.7±4.8 22.8±3.3 52.0±1.2 39.8±6.7 20.9±1.5 48.0±2.8 44.7±1.7

DyHead COCO 10 Full 48.4±1.2 27.5±1.4 39.3±2.7 62.1±5.9 61.6±1.4 81.7±3.4 58.8±9.0 52.9±3.2 30.1±3.2 54.1±3.3 44.8±4.9 26.7±2.4 63.4±2.8 50.1±1.6

DyHead COCO All Full 60.1 27.6 53.1 76.5 79.4 86.1 69.3 55.2 44.0 61.5 70.6 56.6 81.0 63.2

DyHead O365 1 Full 25.8±3.0 16.5±1.8 15.9±2.7 55.7±6.0 44.0±3.6 66.9±3.9 54.2±5.7 50.7±7.7 14.1±3.6 33.0±11.0 11.0±6.5 8.2±4.1 43.2±10.0 33.8±3.5

DyHead O365 3 Full 40.4±1.0 20.5±4.0 26.5±1.3 57.9±2.0 53.9±2.5 76.5±2.3 62.6±13.3 52.5±5.0 22.4±1.7 47.4±2.0 30.1±6.9 19.7±1.5 57.0±2.3 43.6±1.0

DyHead O365 5 Full 43.5±1.0 25.3±1.8 35.8±0.5 63.0±1.0 56.2±3.9 76.8±5.9 62.5±8.7 46.6±3.1 28.8±2.2 51.2±2.2 38.7±4.1 21.0±1.4 53.4±5.2 46.4±1.1

DyHead O365 10 Full 46.6±0.3 29.0±2.8 41.7±1.0 65.2±2.5 62.5±0.8 85.4±2.2 67.9±4.5 47.9±2.2 28.6±5.0 53.8±1.0 39.2±4.9 27.9±2.3 64.1±2.6 50.8±1.3

DyHead O365 All Full 53.3 28.4 49.5 73.5 77.9 84.0 69.2 56.2 43.6 59.2 68.9 53.7 73.7 60.8

GLIP-T 1 Full 54.8±2.0 18.4±1.0 33.8±1.1 70.1±2.9 64.2±1.8 83.7±3.0 70.8±2.1 56.2±1.8 22.9±0.2 56.6±0.5 59.9±0.4 18.9±1.3 54.5±2.7 51.1±0.1

GLIP-T 3 Full 58.1±0.5 22.9±1.3 40.8±0.9 65.7±1.6 66.0±0.2 84.7±0.5 65.7±2.8 62.6±1.4 27.2±2.7 61.9±1.8 60.7±0.2 27.1±1.2 70.4±2.5 54.9±0.2

GLIP-T 5 Full 59.5±0.4 23.8±0.9 43.6±1.4 68.7±1.3 66.1±0.6 85.4±0.4 72.3±0.0 62.1±2.0 27.3±1.2 61.0±1.8 62.7±1.6 34.5±0.5 66.6±2.3 56.4±0.4

GLIP-T 10 Full 59.1±1.3 26.3±1.1 46.3±1.6 67.3±1.5 67.1±0.7 87.8±0.5 72.3±0.0 57.7±1.7 34.6±1.7 65.4±1.4 61.6±1.0 39.3±1.0 74.7±2.3 58.4±0.2

GLIP-T All Full 62.3 31.2 52.5 70.8 78.7 88.1 75.6 61.4 51.4 65.3 71.2 58.7 76.7 64.9

GLIP-L 1 Full 64.8±0.6 18.7±0.6 39.5±1.2 70.0±1.5 70.5±0.2 69.8±18.0 70.6±4.0 68.4±1.2 71.0±1.3 65.4±1.1 68.1±0.2 28.9±2.9 72.9±4.7 59.9±1.4

GLIP-L 3 Full 65.6±0.6 22.3±1.1 45.2±0.4 72.3±1.4 70.4±0.4 81.6±13.3 71.8±0.3 65.3±1.6 67.6±1.0 66.7±0.9 68.1±0.3 37.0±1.9 73.1±3.3 62.1±0.7

GLIP-L 5 Full 66.6±0.4 26.4±2.5 49.5±1.1 70.7±0.2 71.9±0.2 88.1±0.0 71.1±0.6 68.8±1.2 68.5±1.7 70.0±0.9 68.3±0.5 39.9±1.4 75.2±2.7 64.2±0.3

GLIP-L 10 Full 66.4±0.7 32.0±1.4 52.3±1.1 70.6±0.7 72.4±0.3 88.1±0.0 67.1±3.6 64.7±3.1 69.4±1.4 71.5±0.8 68.4±0.7 44.3±0.6 76.3±1.1 64.9±0.7

GLIP-L All Full 69.6 32.6 56.6 76.4 79.4 88.1 67.1 69.4 65.8 71.6 75.7 60.3 83.1 68.9

GLEE-Lite 1 Full 61.3±0.5 19.2±3.1 27.2±3.4 70.8±3.3 52.8±15.1 70.7±7.5 49.2±22.0 58.1±5.4 28.8±11.0 57.9±10.0 57.7±0.6 22.2±7.9 57.0±4.5 48.7±0.9

GLEE-Lite 3 Full 62.6±0.1 25.5±3.8 29.1±1.5 72.9±4.1 65.8±1.7 83.0±4.4 66.8±3.4 61.7±10.4 40.0±3.0 61.2±3.5 44.9±12.9 26.7±3.5 64.5±6.8 54.2±2.3

GLEE-Lite 5 Full 62.8±0.4 28.0±3.1 33.8±2.2 71.7±2.7 64.0±4.4 81.6±4.1 64.9±5.2 60.1±12.4 39.1±1.0 59.7±3.0 49.2±14.5 30.8±1.3 69.2±7.8 55.0±3.7

GLEE-Lite 10 Full 62.1±0.9 32.0±1.6 39.3±2.0 71.2±1.5 64.4±2.7 88.0±2.7 64.3±9.8 65.5±1.5 36.4±4.2 62.1±3.4 54.8±10.9 38.8±1.2 70.6±4.0 57.7±0.6

GLEE-Lite All Full 62.8 37.9 52.9 73.6 76.5 88.9 69.7 65.0 51.1 58.9 67.4 57.2 82.3 64.9

GLEE-Plus 1 Full 68.2±2.2 20.4±0.2 43.9±4.1 75.5±1.6 68.4±2.7 50.6±29.0 47.3±0.8 70.4±4.0 64.6±0.5 67.7±1.5 62.3±1.0 30.0±9.2 71.6±7.7 57.0±0.8

GLEE-Plus 3 Full 70.6±0.9 24.8±2.1 47.6±0.8 79.5±0.7 69.0±2.0 83.1±5.9 66.2±1.3 75.6±3.5 65.3±1.1 69.0±0.8 65.7±4.2 38.1±3.1 76.3±4.6 63.9±1.2

GLEE-Plus 5 Full 69.9±0.9 29.6±2.9 48.8±1.2 75.0±1.7 67.7±5.1 83.6±9.9 68.5±3.2 71.6±5.9 61.6±4.0 67.7±0.8 66.8±4.5 38.8±1.9 78.9±1.0 63.7±1.0

GLEE-Plus 10 Full 69.3±1.2 32.5±1.9 50.8±0.9 76.4±0.6 70.7±0.9 88.2±1.2 68.9±3.3 68.2±3.0 60.0±1.9 69.3±1.5 62.6±10.3 41.7±3.1 81.7±1.7 64.6±1.7

GLEE-Plus All Full 70.4 34.8 54.1 76.4 74.5 89.7 68.6 67.6 57.8 69.2 71.4 57.1 82.9 67.3

GLEE-Pro 1 Full 70.9±1.7 24.5±2.3 46.7±0.4 76.4±0.8 68.2±3.8 60.4±7.8 58.9±2.7 68.2±4.5 58.5±8.8 67.6±0.8 69.2±0.2 31.8±2.6 70.8±7.6 59.4±1.5

GLEE-Pro 3 Full 72.3±0.4 28.4±0.5 49.6±2.2 76.1±1.3 69.3±3.9 79.4±9.5 67.4±3.5 74.1±4.9 63.7±2.0 68.4±0.6 68.3±2.1 42.1±5.3 76.9±1.6 64.3±1.3

GLEE-Pro 5 Full 71.4±0.9 33.4±1.5 50.6±4.3 73.8±3.9 71.9±0.3 83.6±6.8 66.6±1.8 72.5±4.3 59.1±4.8 68.7±1.4 69.7±1.3 39.5±4.8 77.4±3.2 64.5±0.9

GLEE-Pro 10 Full 71.1±1.9 37.8±2.1 54.2±1.2 73.9±7.2 70.7±1.3 90.9±1.4 66.0±9.4 73.9±6.8 57.8±3.9 69.4±0.9 62.9±6.3 44.3±3.8 79.8±0.6 65.6±0.4

GLEE-Pro All Full 72.6 36.5 58.1 80.5 74.1 92.0 67.0 76.5 66.4 - - 55.7 -

Table 9. Per-dataset performance compared with DyHead, GLIP-T, and GLIP-L. For PascalVOC, we report the mAP (IoU=0.50:0.95)
using the COCO evaluation script, to be consistent with other 12 datasets. “Full” denotes full-model tuning.
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Figure 2. The visualization results of interactive segmentation and tracking. For image-level interactive segmentation, GLEE supports
sending points, boxes, or scribbles as a visual prompts to the model, enabling direct segmentation of the specified object. In the case
of video object segmentation, using the masked feature from the first frame as a prompt referring features allows segmentation of the
corresponding object in subsequent frames of the video.
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