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1. Network Efficiency
We compare the runtime, network parameters, and GPU
memory with previous state-of-the-art methods. As shown
in Tab. 1, our method achieves the best performances with-
out relying on intensive network parameters. Meanwhile,
our method achieves a comparable running time with pre-
vious methods. We found that the most computation lies in
the GCP process, which can be further optimized for faster
inference.

Methods Overall Params(M) GPU(GB) Time(s)
UniMVSNet [7] 0.315 0.934 8.8 0.271

TransMVSNet [3] 0.305 1.148 4.3 0.743
GeoMVSNet [11] 0.295 15.306 9.2 0.191
MVSFormer [2] 0.289 26.710 6.2 0.301

Ours 0.287 1.503 12.1 0.485

Table 1. Comparison on network efficiency.

2. Details of Monocular Normal Cues
We use an off-the-shelf surface normal network Omnidata
[4] to estimate surface normal cues. Omnidata is trained
using the images at the resolution of 384 × 384, which
may not guarantee high-quality normal cues when the res-
olution of input images becomes higher. To this end, we
adopt a divide-and-conquer strategy proposed by MonoSDF
[10]. Specifically, 1) we divide the input image into multi-
ple 384× 384 patches with overlapping regions, 2) we esti-
mate normal maps for all image patches, 3) we leverage the
SVD decomposition to compute the optimal rotation matrix
R to align the normal patches, which are then merged into
high-resolution normal maps.

3. Evaluation of Different Normal Cues
In Section 4.4 of the main paper, we analyze the quanti-
tative results of using different normal generation schemes
[4, 8, 9] for geometrically consistent aggregation. In this
section, we visualize the normal maps and their corre-
sponding normal error maps for different normal generation

* indicates equal contributions and ✝ indicates corresponding authors.

schemes. Herein, the normal error is represented by the
angle between the computed normal map and the ground
truth normal map. As shown in Fig. 1, the normal com-
puted from the intermediate depth map and cost volume
present noisy predictions with artifacts, which can lead to
degraded reconstruction quality. As a comparison, monoc-
ular normals provide more reasonable normal predictions
with smoother surfaces, facilitating better aggregations as
shown in the quantitative results. Additionally, we quanti-
tatively evaluate the impact of normal quality on the final
depth map. As shown in Tab. 2, higher normal accuracy
leads to better depth prediction.

Method Depth ACC. Normal ACC.
MAE↓ <2mm↑ <4mm↑ <12.5↑ <22.5↑ <30↑

Depth2normal 15.58mm 77.30% 81.26% 31.94% 57.47% 70.43%
Cost2normal 15.44mm 78.72% 83.04% 24.36% 63.23% 79.00%

Omnidata 13.04mm 79.83% 83.57% 32.36% 66.22% 78.22%

Table 2. Normal and depth accuracy on DTU test set.

4. More Qualitative Results
Comparison of the reconstruction error. We visualize the
reconstruction recall error maps on the Tank and Temple
dataset as shown in Fig. 2. Our method achieves more faith-
ful and complete reconstructions than previous methods.
Visulization of reconstructed point clouds. We present
the reconstructed point clouds of DTU and Tanks and Tem-
ple datasets in Fig. 3 and 4, respectively. Our method faith-
fully captures rich details in both well-controlled laboratory
scenes (DTU) and complex real-world scenes (TNT).
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Figure 1. Visualization of different normal maps and the corresponding error maps. We visualize the normal maps and normal error
maps of different methods, where the error maps are represented by the angle between the generated normals and the ground truth normals
(red indicates larger errors, while blue indicates lower errors). Monocular normals demonstrate smoother and more reasonable predictions
than other schemes.
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Figure 2. Comparison of reconstruction recall error maps on the Tank and Temple [6] dataset. Our method reconstructs more
complete results than previous methods.

Figure 3. Point cloud reconstructions of our method on the Tanks and Temples [6] dataset.
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Figure 4. Point clouds reconstructions of our method on the DTU [1] dataset.
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