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Supplementary Material

In the supplementary material, we also compared other
augmentation methods, and the results showed that our ID-
Blau method outperforms them. Additionally, We provide
additional reblurred results by ID-Blau to demonstrate ID-
Blau’s ability to generate realistic reblurred images. Be-
sides, we demonstrate deblurring results with and without
using ID-Blau on RWBI [10], which contains real-world
blurred images without ground truth.

1. Comparison with other augmentation meth-
ods.

BSDNet [5] disentangles content and blur features for re-
blurring. However, BSDNet cannot pixel-wisely or arbi-
trarily control blur patterns compared to ID-Blau. Since
BSDNet has not released the code, we compare the per-
formance reported in its paper. Table 1 shows the reblur-
ring performance on the GoPro test set (also see Table IV
in BSDNet). The results demonstrate that ID-Blau can re-
generate blur patterns more precisely than BSDNet. SBDD
[1] utilizes predefined blur kernels to convolve sharp im-
ages for reblurring. However, since blur patterns are usually
unknown during testing, using predefined kernels, in gen-
eral, is suboptimal. Table 2 compares the performances of
ID-Blau and SBDD under the same training strategy as ID-
Blau, and demonstrates that ID-Blau outperforms SBDD.

2. Reblurred Visualizations Results of ID-Blau
Reblurring through optical flows. We show additional
visualizations to emphasize ID-Blau’s ability to generate
high-quality blurred images with various conditions. In Fig-
ure 1, 2, and 3, we use a sharp image S and a blur con-
dition map C = [x; y; z] from the GoPro training set [6]
as the inputs to generate the corresponding blurred image.
Moreover, in each figure, we generate four more blur con-
dition maps based on C for further illustration, including
horizontal and vertical blur orientations, C1 = [1; 0; z] and
C2 = [0; 1; z], horizontally reversed C as C3 = [−x; y; z],
and C4 = [−x; y; 2z], which magnifies blur magnitudes of
C3 by twice. These visualizations demonstrate ID-Blau’s
ability to generate diverse blurred images.

Reblurring through semantic segmentation maps. To
verify the generalization ability of ID-Blau on unseen sharp
images, we apply ID-Blau to the PASCAL VOC 2012 [3]
dataset, which provides sharp images with semantic seg-
mentation maps. The semantic segmentation maps provide

Table 1. Comparison of reblurring performance among BGAN,
BSDNet, and ID-Blau on GoPro test set. All methods are trained
on GoPro training set.

Model PSNR ↑ SSIM ↑ LPIPS ↓
BGAN 26.28 0.906 0.213

BSDNet 32.09 – –
ID-Blau 32.91 0.960 0.079

Table 2. Comparison of deblurring performance among SBDD
and ID-Blau on the GoPro test set. We use the same strategy, i.e.
pre-training followed by fine-tuning, for all methods.

Model Baseline +SBDD +ID-Blau
MIMO-UNet (PSNR ↑) 31.22 31.47 32.02

the object-level location for each pixel, allowing us to con-
vert them to blur condition maps for ID-Blau. Therefore, we
can utilize sharp images in the PASCAL VOC 2012 dataset
with various blur condition maps generated for producing
diverse blurred images using ID-Blau. Figure 4 shows some
generated blurred examples from the PASCAL dataset us-
ing ID-Bau trained on the GoPro training set. These re-
sults verify ID-Blau’s robustness in generating high-quality
blurred images from unseen sharp images. Furthermore, as
can be seen in the figure 5, we specify different blur con-
ditions on the left and right sides of a map to generate in-
harmonious blurred images. Despite using inharmonious
blur condition maps, ID-Blau can still generate blur at pixel-
level precision, demonstrating ID-Blau’s stability for gener-
ating blurry images.

3. Deblurring Results on Real-World Blurry
Images

We provide additional qualitative comparisons among de-
blurring models (deblurring baselines, denoted “Baseline”
and their ID-Blau-powered versions, denoted “ID-Blau”)
trained on RealBlur-J [7] and tested on RWBI [10] dataset.
The RWBI dataset contains real-world blurred images with-
out ground truth. We demonstrate the qualitative compar-
isons of MIMO-UNet+ [2] in Figures 6 and 7, Restormer [9]
in Figures 8 and 9, Stripformer [8] in Figures 10 and 11, and
FFTformer [4] in Figures 12 and 13. The qualitative results
demonstrate ID-Blau’s ability to improve deblurring results
on real-world blurry images.
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Figure 1. Qualitative reblurred results of ID-Blau on the GoPro training set [6].
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Figure 2. Qualitative reblurred results of ID-Blau on the GoPro training set [6].
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Figure 3. Qualitative reblurred results of ID-Blau on the GoPro training set [6].



Figure 4. Qualitative reblurred results of ID-Blau on the PASCAL VOC 2012 [3] dataset. We used sharp images and altered blur conditions
to generate various blurred images.



Figure 5. Qualitative reblurred results of ID-Blau on the PASCAL VOC 2012 [3] dataset. We utilized sharp images and intentionally
deviated blur conditions to generate blurred images.
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Figure 6. Qualitative results of MIMO-UNet+ [2] on the RWBI [10] dataset.
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Figure 7. Qualitative results of MIMO-UNet+ [2] on the RWBI [10] dataset.
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Figure 8. Qualitative results of Restormer [9] on the RWBI [10] dataset.
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Figure 9. Qualitative results of Restormer [9] on the RWBI [10] dataset.
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Figure 10. Qualitative results of Stripformer [8] on the RWBI [10] dataset.
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Figure 11. Qualitative results of Stripformer [8] on the RWBI [10] dataset.
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Figure 12. Qualitative results of FFTformer [4] on the RWBI [10] dataset.
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Figure 13. Qualitative results of FFTformer [4] on the RWBI [10] dataset.
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