
Supplementary Material for IPoD: Implicit Field Learning with Point Diffusion
for Generalizable 3D Object Reconstruction from Single RGB-D Images

Yushuang Wu1,2 Luyue Shi1,2 Junhao Cai4 Weihao Yuan3 Lingteng Qiu1,2

Zilong Dong3 Liefeng Bo3 Shuguang Cui2,1 Xiaoguang Han2,1†

1SSE, CUHKSZ 2FNii, CUHKSZ 3Alibaba Group 4HKUST

1. More Details for the Method

Model Architectures For the Transformer-based imple-
mentation (Ours2), we use the same encoder for the im-
age and partial point cloud input as in NU-MCC [1]. EI

is a Vision Transformer (ViT) with a 16×16 patch em-
bedding layer based on 2D convolution of hidden dimen-
sion 768 and 12 Transformer layers, of which each layer
consists of a 768-dimensional self-attention operator with
12 heads and a 3072-dimensional 2-layer MLP. So EI ex-
tracts an image feature map of shape 196×768 for each in-
put image of shape 224×224×3. We use an anchor pre-
diction module following NU-MCC. The input point cloud
P is first fed into a positional embedding layer to be em-
bedded by 16 × 16 patch, which down-samples and seri-
alizes it from 224×224×3 into 196×768, and 12 Trans-
former layers are used as in EI to extract point cloud fea-
tures of shape 196×768. The two features are concate-
nated into 196×1536 for further decoding. For the query
points, we use 2048 points to form one Xt in each training
iteration. The encoder EX first uses a positional embed-
ding to raise the dimension of Xt from 3 to 512. Then
another frequency-based embedding layer is used to em-
bed the time step t into a vector of length 20, with a lin-
ear layer mapping it into a vector with two values as the
scale and shift factor, respectively. The two factors are then
used in the affine transformation of Xt’s embedding. The
embedding of Xt finally goes through a linear layer to get
the feature shape of 2048×512. In the decoding stage, we
use the same anchor prediction module to speed up the de-
coding, where 200 anchor points with 512-dimensional fea-
tures are decoded using the input features at first. Then,
the anchor features and query point features are used in a
feature aggregation module to compute ν′ first, and then
concatenated with the feature of Xt to compute ϵ′, both of
which rely on a Transformer-based decoder plus an MLP
for output. The feature aggregation module is implemented
with two cross-attention layers of 512 hidden dimensions
and five 512-dimensional linear layers with residual short-
cuts. The architecture details of the anchor decoder and the

feature aggregation module are introduced in the NU-MCC
paper [1]. The prediction head for ν is implemented with
a linear layer and the noise prediction head is constructed
based on an MLP with hidden dimension 128, and the MLP
is implemented with two 1d convolution layers and a group
normalization layer of 8 groups.

For the PVCNN-based implementation (Ours1), we
adopt a PVCNN [2] as the decoders, and the detailed archi-
tecture of PVCNN follows the implementation in PC2 [3]
and PVD [8], where the point features are extracted by
a point-based CNN (PointNet++ [4]), and another voxel-
based branch simultaneously aggregate the nearby fea-
tures for each point in a more hierarchical manner. At
the encoding stage, we employ the same implementation
of EX as in the Transformer-based one. We use a ViT
(vit small patch16 224 msn1) as the image encoder EI that
output 384-dimensional features. The partial point cloud
encoder EP uses a 60-dimensional positional embedding
layer plus a 1d convolutional layer to get 512-dimensional
point-wise features for PVCNN decoding. Besides, we
use the same projection conditioning method proposed in
PC2 [3]. It works by projecting the image features onto
each point in P and Xt according to the geometry rela-
tion between each pixel and its corresponding 3D position.
We randomly sample 16384 points in P and 4096 points in
forming Xt. Therefore, the concatenated features for de-
coding are in the shape of 20480×896.

More Training and Inferring Details We sample 4096
query points as a noisy sample for both implicit field learn-
ing and diffusion learning in each iteration for training. At
the inferring stage, we denoise 12 noisy samples in a paral-
lel manner and combine all points to form the final output
point cloud. In the Transformer-based implementation, we
use an anchor prediction loss as in NU-MCC [1]. So the
final loss function is the summation of a UDF value loss,
an RGB prediction loss, an anchor prediction loss, and a
noise prediction loss. The weighting factors are 1.0, 0.01,
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Figure S1. More qualitative comparison of reconstructions by Ours2 and NU-MCC, evaluated on CO3D-v2 held-out categories. We
visualize two views for each seen, GT, and predicted point cloud by NU-MCC and Ours2.

0.03, and 1.0, following the practice in NU-MCC. In the
UDF learning, we set the UDF value supervision clamping
to 0.5 as in NU-MCC, which can take less care about the
positions that are too far away from the object surface. At
the inferring stage, we also use a post-processing manner as
in NU-MCC, which takes four steps, first filtering out those
points with UDF values larger than 0.23, secondly taking
10 times forwarding to shift the points along their gradient
directions, thirdly computing the repulsive shift to adjust
the point positions, and at last computing the corresponding
RGB values at all of the final point positions. Such post-
processing operations are used for a more fair comparison
with NU-MCC, but note that they can only bring a 2% gain
to the F-score according to our experiments and our pro-
posed method does not rely on such operations.

2. More Details for the Experiments

Held-out CO3D categories In our experiments, we hold
out 10 categories of CO3D-v2 [5] as ones in MCC [6] as
the test set to follow MCC’s setting. The 10 selected cate-
gories are: {apple, ball, baseball-glove, book, bowl, car-
rot, cup, handbag, suitcase, toyplane}. We randomly
sample three views for all testing samples and average the
scores on all views to get the average results.

Evaluation metrics Denote the predicted and the GT
point cloud as A ∈ RN×3 and B ∈ RN ′×3, and any point
in them is denoted as a and b, respectively. We first define a

thresholding function µ(·):

µ(x) =

{
0, if x ≤ ρ

1, if x > ρ

where ρ = 0.1 is a pre-defined threshold as in our paper. It
is used to judge whether a point-to-point distance is within
the threshold ρ.

The used evaluation metrics include:
Acc: L1 distance from the predicted to GT point cloud:

Acc(A,B) =
∑
a∈A

min
b∈B

|a− b|.

Comp: L1 distance from GT to the predicted point cloud:

Comp(A,B) =
∑
b∈B

min
a∈A

|a− b|.

Chamfer distance (CD): the summation of the above two:

CD(A,B) = Acc(A,B) + Comp(A,B).

Prec: the ratio of generated points with correct predictions:

Prec(A,B) =
1

N ′

∑
a∈A

µ(min
b∈B

|a− b|).

Recall: the ratio of recalled points in the GT point cloud:

Recall(A,B) =
1

N

∑
b∈B

µ(min
a∈A

|a− b|).

F-score: the harmonic mean of precision and recall:

Recall(A,B) =
2× Prec(A,B)× Recall(A,B)

Prec(A,B) + Recall(A,B)
.
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Figure S2. Visualization of reconstructions by Ours2, evaluated on CO3D-v2 held-out categories. We visualize three views for each seen
point cloud, GT point cloud, and the predicted point cloud of Ours2.

Point Cloud Cleaning in MVImgNet We cleaned the re-
constructed point clouds in MVImgNet [7] by removing
samples with low completeness, which often consist of only
a few points after multi-view reconstruction, usually caused
by the surface material, color, lighting, video blur, etc. For
some point clouds that exhibit significant deformation to the
true object shape, we also remove them. Such deformations
are usually caused by the camera pose estimation error. Be-
sides, we also manually remove the significant noisy points
in each point cloud. These noisy points are usually back-
ground points, preserved due to the error in object mask
estimation. The cleaning is completed by a group of (more
than 10) human annotators.

3. More Results

Visualization on CO3D-v2 Held-out Categories We
provide more reconstruction results by our method imple-
mented based on Transformer (Ours2) in Fig. S1, as an ex-

tension of Fig. 6 in the main paper. To highlight the com-
parison, we only choose the previous best baseline method
NU-MCC and show the comparison between its reconstruc-
tion results and the ones produced by Ours2. As shown,
our method can produce better reconstructions than NU-
MCC on both completeness and precision. Besides, we also
provide more visualization results of Ours2 in Fig. S2 to
demonstrate the effectiveness of our method.

Visualization on CO3D-v2 Held-in Categories Except
for evaluation on CO3D-v2 held-out categories, we also vi-
sualize the reconstruction results on testing samples from
categories that are seen in training (held-in). As shown in
Fig. S3, our method also gets better results than NU-MCC
on held-in categories.

More results on MVImgNet We provide qualitative re-
sults of our method implemented with Transformer (Ours2)
on the unseen categories from the MVImgNet dataset [7].
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Figure S3. More qualitative comparison of reconstructions by Ours2 and NU-MCC, evaluated on CO3D-v2 testing samples from held-in
categories. We visualize two views for each seen, GT, and predicted point cloud by NU-MCC and Ours2.

We visualize several generalization results by NU-MCC and
Ours2 and also provide the quantitative evaluations for com-
parison in Fig. S4. As shown, Ours2 produces more accu-
rate details and more complete shapes. Besides, we sam-

pled 1k data from the cleaned MVImgNet point clouds as
the test set for a larger-scale quantitative evaluation. As
shown in Tab. S1, our method achieves 0.158 on CD and
0.903 F1-score, which significantly outperforms NU-MCC
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Table S1. Quantitative comparison of reconstructions by NU-
MCC and Ours2 on 1k samples from cleaned MVImgNet data.

Methods Acc↓ Comp↓ CD↓ Prec↑ Recall↑ F1↑
NU-MCC 0.130 0.066 0.196 0.732 0.948 0.824
Ours2 0.098 0.061 0.158 0.858 0.955 0.903

Image Seen GT Image
Seen GT

Image Seen GT

Image Seen GT Image
Seen GT

Image
Seen GT

NU-MCC Ours2
F1: 89.3%   CD: 0.152 F1: 94.2%   CD: 0.133

NU-MCC Ours2
F1: 83.2%   CD: 0.166 F1: 96.4%   CD: 0.119

NU-MCC Ours2
F1: 74.1%   CD: 0.268 F1: 82.9%   CD: 0.220

NU-MCC Ours2
F1: 85.3%   CD: 0.164 F1: 91.7%   CD: 0.123

NU-MCC Ours2
F1: 89.0%   CD: 0.147 F1: 94.9%   CD: 0.111

NU-MCC Ours2
F1: 78.9%   CD: 0.257 F1: 91.3%   CD: 0.149

Figure S4. Visualization comparison between the reconstructions
of NU-MCC and Ours2 on samples from MVImgNet. We also
compute the F1-score and CD for each reconstructed sample.

on both reconstruction accuracy and completeness (0.196
on CD and 0.824 on F1-score). Results on MVImgNet fur-
ther justify the superiority of the proposed method.

Visualization for ablation study on self-conditioning In
the paper, we provide the quantitative results on the abla-
tion of using the proposed self-conditioning mechanism or
not. We additionally provide some qualitative comparison
to better visualize the effect of the self-conditioning mech-
anism, as shown in Fig. S5.
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Figure S5. Qualitative results for ablation study on using (w/) self-
conditioning or not (w/o). Red frames highlight the differences.

Video Visualization We provide videos for (i) the dy-
namic process (in inferring) visualization of implicit field
learning with point diffusion for several samples, see “dif-
fusion process.mp4” in the compressed file; (ii) a 360◦ ro-
tational display for several reconstructed point clouds by
Ours2, see “rotational display.mp4” in the compressed file.
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