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Overview
We provide additional details and results to complement the main paper. This document includes the following materials:

• More implementation details of our method (Appendix A);

• Analysis of pseudo label quality under different settings (Appendix B);

• Visualizations of pseudo labels (Appendix C);

• Discussions on the naming of two experimental settings: WSOD vs. SSOD (Appendix D);

• Discussions on potential negative societal impacts (Appendix E).
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A. More Implementation Details
A.1. Tracking-based Post-Processing

Given the detection outputs from TTA, we first aggregate
them via Non-Maximum Suppression (NMS). Now, for
each event frame I at timestep t, we have a set of 2D bound-
ing boxes Bt = {btj = (xj , yj , wj , hj , lj , t)}. We follow the
tracking-by-detection paradigm [1] to build tracks by link-
ing detection boxes between frames, which is also inspired
by [13]. Each track sk = {(b, vx, vy)t, k, n, q} maintains
the following attributes: (vx, vy) is the estimated velocity
in the pixel space, k is the track’s unique ID, n is its length
so far, and q ∈ [0, 1] is its current score, which is decayed
over time and determines whether to delete the track. In the
first frame, we initialize each box in B0 as a track, where
(vx, vy) = (0, 0), n = 1, and q = 0.9. For every coming
frame It, we need to link its bounding boxes Bt to exist-
ing tracks {sk}. We first predict the new box parameter of
each track using its coordinate in the last frame (x, y) and
(vx, vy) with a linear motion assumption, while keeping its
size in the last frame (w, h) unchanged. Then, we com-
pute pairwise IoUs between the predicted boxes and Bt to
apply greedy matching. Only boxes in the same category
and with an IoU larger than τiou can be matched. For un-
matched boxes, we initialize tracks for them as done in the
first frame. For unmatched tracks, we decay its score as
qt = 0.9 ∗ qt−1, which allows for object re-identification in
future frames. For matched boxes and tracks, we update the
box parameters and velocity, and reset the score as q = 1.
Finally, we go over each track and delete those with a lower
score q < τdel. After tracking, each box is associated with a
track, and thus a length n (note that n represents the number
of successful matches instead of the time between creation
and deletion, i.e., unmatched timesteps do not count). We
identify boxes with n < Ttrk as temporally inconsistent.

Similar to TTA, we apply tracking in forward and back-
ward event sequences, and will only remove a box if it
has a short track length in both directions. For those long
tracks, we inpaint boxes at their unmatched timesteps us-
ing the synthesized ones with linear motion. This builds
upon the prior of object permanence and can further sta-
bilize the training in our experiments. Overall, the detec-
tion losses related to removed and inpainted boxes will be
ignored during model training. For hyper-parameters, we
choose τiou = 0.45 which is the same as the IoU thresh-
old used in NMS, τdel = 0.55 which is slightly higher than
0.96 ≈ 0.53, and Ttrk = 6. We do not tune these hyper-
parameters and simply use the first set of values that works.

A.2. RVT Training

We build upon the open-source codebase of RVT1 [4] and
copy most of their training settings. Events in each 50ms

1https://github.com/uzh-rpg/RVT

time window are converted to a frame-like 10-channel event
histogram representation. We use RVT-S in most of the ex-
periments due to limited computation resources, but also
scale up LEOD to RVT-B in Sec. 4.4. Following [4], we
down-sample the labeling frequency of 1Mpx [8] to 10 Hz.
Pre-training on Sparse Labels. The same optimizer, batch
size, data augmentation, and data sampling methods are
used. In order to apply the time-flip TTA during pseudo-
labeling, we add a temporal flipping augmentation. We train
for 200k steps on 1% labels, 300k steps on 2% labels, and
400k steps on 5%, 10%, and 100% labels. On 1Mpx [8],
we use an increased sequence length L = 10 for training,
as we observed clearly better results compared to L = 5.
Pseudo Label Filtering. We filter out low-confidence
bounding boxes to obtain high-quality pseudo labels. As
introduced in Sec. 3.1, RVT predicts an objectness score
pobj ∈ [0, 1] and a class-wise IoU score piou ∈ RC , piiou ∈
[0, 1] for each bounding box. We only keep boxes with
pobj ≥ τhard and max(piou) ≥ τhard, and further ignore
losses on those with pobj < τsoft and max(piou) < τsoft.
Self-training on Pseudo Labels. We still use the same
batch size, data augmentation, and data sampling methods.
Since pseudo labels have a much higher labeling frequency
than the original ground-truth labels, the effective training
batch size under the same event sequence length is larger.
Following the square root scaling law [5], we use a higher
learning rate of 5×10−4 on Gen1 [2] and 8×10−4 on 1Mpx.
We train for 150k and 200k steps in round 1 and round 2
self-training, respectively. At each training step, we first
conduct the normal anchor assignment process [3] to com-
pute training losses, and then set the losses on anchors as-
sociated with uncertain boxes (boxes with a detection score
lower than τsoft and the ignored and inpainted boxes from
tracking-based post-processing) as 0.
Training Objective of RVT. RVT adopts the anchor-free
YOLOX [3] detection head. Let oi ∈ {0, 1} denote whether
an anchor point is matched to a ground-truth box kept after
label filtering, and ri ∈ {0, 1} denote whether it is matched
to a box removed in tracking or soft anchor assignment (thus
ignored in loss computation), the training loss of RVT is:

L =1{ri=0}LBCE(p
i
obj, o

i) + 1{oi=1}LCE(p
i
iou, l

i)

+ 1{oi=1}LIoU(∆bi, bi)
(1)

Our proposed components only bring negligible over-
heads to model training. Therefore, we can train our model
on 2 NVIDIA A40 GPUs. The pre-training stage takes 60
hours, while self-training takes around 40 hours.

B. Detailed Analysis of Pseudo Label Quality
Fig. 1 shows the precision and recall of pseudo labels un-
der different settings and thresholds. They are computed by
evaluating pseudo labels against the ground-truth labels at

https://github.com/uzh-rpg/RVT


0.3 0.4 0.5 0.6 0.7 0.8
Thresholds

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Pr
ec

isi
on

Precision (1%) Precision (2%) Precision (5%) Precision (10%) Recall (1%) Recall (2%) Recall (5%) Recall (10%)

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Re
ca

ll

0.3 0.4 0.5 0.6 0.7 0.8
Thresholds

0.5

0.6

0.7

0.8

0.9

Pr
ec

isi
on

hard

0.5

0.6

0.7

0.8

0.9

Re
ca

ll

(a) Gen1 WSOD Cars
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(b) Gen1 WSOD 1Round Cars
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(c) Gen1 SSOD Cars
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(d) Gen1 WSOD Pedestrians
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(e) Gen1 WSOD 1Round Pedestrians
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(f) Gen1 SSOD Pedestrians
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(g) 1Mpx WSOD Cars
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(h) 1Mpx WSOD Pedestrians
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(i) 1Mpx WSOD Two-Wheelers
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(j) 1Mpx SSOD Cars
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(k) 1Mpx SSOD Pedestrians
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(l) 1Mpx SSOD Two-Wheelers

Figure 1. We plot the precision and recall of pseudo labels generated under different settings. In each figure, solid lines represent precision
and dotted lines represent recall. Four labeling ratios 1%, 2%, 5%, 10% are selected. The black dotted line is the threshold for label filtering.
We fix the Y-axis value range within each ground {(a), (b), (c)}, {(d), (e), (f)}, {(g), (j)}, {(h), (k)}, {(i), (l)} for easy comparisons.

annotated but skipped frames. If a predicted box has an IoU
higher than 0.75 with a ground-truth box, we treat it as a
positive detection. We make the following observations:

More pre-training labels lead to better quality. In all set-
tings, models pre-trained with more labels produce pseudo
labels with clearly higher precision and recall.



Cars are much easier to detect than other categories.
Comparing cars, pedestrians, and two-wheelers, it is clear
that cars have a much better label quality in all settings.
This is because cars are larger and there are more bound-
ing box annotations of cars than other objects. On 1Mpx,
two-wheelers are slightly easier to detect than pedestrians.
Future work can study how to address the class-imbalance
issue and improve detections on hard examples.
Self-training improves pseudo label quality, but may de-
grade precision. Comparing Fig. 1 (a) and (b), (d) and (e),
we can see that one round of self-training greatly improves
the recall (dotted lines). However, the precision (solid lines)
drops if we use a small τhard. This is because the model
learns to discover more objects after self-training, but is also
over-confident in its predictions. Therefore, fewer false pos-
itives are removed in the filtering process. One solution is to
increase the threshold τhard over the number of self-training
rounds, as done in [10]. We tried this in our preliminary
experiments but did not observe a clear improvement.
Weakly-supervised learning (WSOD) leads to better re-
sults than semi-supervised learning (SSOD). Comparing
the WSOD and SSOD results in Fig. 1, we can see that mod-
els trained in WSOD produce much higher quality pseudo
labels than their SSOD counterparts. Together with the de-
tection mAP results presented in Sec. 4.2, this proves that
sparsely labeling as many event streams as possible is better
than densely labeling a few event sequences.
Gen1 vs. 1Mpx. Comparing Fig. 1 (a) and (g), (c) and (j),
it is clear that models on Gen1 detect cars much better than
on 1Mpx. This is because 1Mpx has a higher resolution and
the number of cars per frame is also larger (1Mpx: 3.8 vs
Gen1: 1.9). Interestingly, as can be seen from Fig. 1 (d)
and (h), the label quality of pedestrians on Gen1 is worse
than on 1Mpx. After visualizing some results, we realize
that this is because Gen1 does not provide annotations for
two-wheelers, but the model detects lots of two-wheelers as
pedestrians, which are regarded as false positives. In con-
trast, 1Mpx does not have this issue as two-wheelers are
also labeled which disambiguates model learning. Indeed,
the gap in precision is much higher than recall, as preci-
sion penalizes false positives. Future work can study how
to learn more discriminative features to separate object cat-
egories, e.g., with class-centric contrastive loss [6].

C. Visualization of Pseudo Labels
We visualize some pseudo labels on Gen1 in Fig. 2.
Failure case analysis. Tracking-based post-processing is
able to eliminate temporally inconsistent boxes. However,
since we use a fixed threshold Ttrk = 6 for all tracks, some
objects may be incorrectly removed. In Fig. 2 (a), the car
highlighted by the purple arrow is a hard example as it only
triggers a few events. The model only detects it in one
frame while missing it in later frames, leading to a short

track length. As a result, the correct detection at t = 16
is mistakenly removed. In Fig. 2 (b), the cars coming from
the other direction move very fast, and only stay visible for
less than Ttrk timesteps. Thus, they are also wrongly re-
moved. Nevertheless, since we ignore these boxes during
model training instead of suppressing them as background,
such errors are less harmful. Fig. 2 (c) shows another fail-
ure case where a two-wheeler is recognized as a pedestrian
as discussed in Appendix B.
Successful examples. In Fig. 2 (c), we visualize the track-
ing trajectory of a pedestrian (the green curve). Although
the pedestrian is occluded and thus not detected at t = 16,
our tracker is able to re-identify it at t = 21, thus keeping
it in the pseudo labels. Fig. 2 (d) shows an example where
a car is not annotated in the ground-truth labels. Our model
successfully discovers it and corrects the annotation error.

D. Discussion on Experimental Setting Naming

In this paper, we propose two settings under the label-
efficient event-based detection task: (i) weakly-supervised
object detection (WSOD) where all event sequences are
sparsely annotated, and (ii) semi-supervised object detec-
tion (SSOD) where some event sequences are densely anno-
tated, and others are fully unlabeled. While (ii) undoubtedly
belongs to semi-supervised learning, (i) may be controver-
sial. In fact, the definition of weakly- and semi-supervised
learning is often overlapping in the literature. For exam-
ple, the Wikipedia page2 seems to give similar definitions
to these two tasks: “Weak supervision, also called semi-
supervised learning, is a paradigm in machine learning...”
Previous surveys [9, 12] identify a key property in semi-
supervised learning: labeled and unlabeled data should be
(although from the same distribution) independent of each
other. In contrast, the labeled frames in a sparsely labeled
event sequence are not independent of the unlabeled frames
in the same sequence. On the other hand, another survey
on weakly-supervised learning [14] regards “incomplete su-
pervision where only a subset of training data are given with
labels” as one type of weak supervision, which is similar to
our sparse labeling setting. These are the main reasons we
term (i) weakly-supervised learning to differentiate it from
semi-supervised learning.

However, we note that some works [7, 11] learning video
object detection with sparsely labeled frames call their set-
ting semi-supervised learning. Moreover, if we employ a
feedforward detector, i.e., detectors that do not leverage
temporal information, setting (i) becomes closer to semi-
supervised learning as labeled and unlabeled timesteps be-
come less relevant. Nevertheless, we believe recurrent de-
tectors are the future trend in event-based object detection
as they lead to significantly stronger performance.

2https://en.wikipedia.org/wiki/Weak_supervision

https://en.wikipedia.org/wiki/Weak_supervision
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Figure 2. We visualize some pseudo labels on Gen1 that are generated by an RVT-S after one round of self-training. Blue boxes are
pseudo labels kept for model training while red boxes are those removed by tracking-based post-processing. Black boxes at t = 16 are
ground-truth annotations. The t here denotes timesteps of the event frame representation instead of seconds in the real world. Purple arrows
highlight some failure cases of our method while green arrows highlight some desired behaviors.

E. Societal Impact

This paper proposes a framework to learn better event-based
object detectors with limited labeled data. Object detection
is a core task in computer vision that is used across a wide
variety of applications including healthcare, entertainment,
communication, mobility, and defense. While only a sub-
set of scenarios in this application can benefit from event-
camera data, it is still difficult to predict the overall impact
of the technology. Moreover, event-based detectors may in-
troduce biases that are different from those encountered in
classical cameras and better understanding such biases is an
open research problem. While we do not see any immediate
risks of human rights or security violations introduced by
our work, future work building upon it will carefully need
to investigate implications on its particular application area.
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