
NAPGuard: Towards Detecting Naturalistic Adversarial Patches

Supplementary Material

In this supplementary material, we provide additional
details that we do not include in our main paper.

A. Overall Algorithm of NAPGuard

To effectively detect naturalistic adversarial patches
(NAPs), we propose the NAPGuard, an elaborated critical
feature modulation framework by aligning aggressive fea-
tures and suppressing natural features during training and
inference, respectively.

Our NAPGuard framework involves both training and in-
ference processes, providing a more comprehensive detec-
tion framework against NAPs. During the training process,
we calculate the pattern alignment loss Lp, an MSE loss
between feature maps obtained from normal images and
aligned images extracted by F(·). Further, we calculate the
auxiliary loss La of the auxiliary branch G(xi,∇2). Finally,
we jointly optimize the detection loss Ld, pattern alignment
loss Lp and auxiliary loss La to enhance the capability of
the adversarial patch detection model (“detector”) in cap-
turing aggressive patterns. During the inference process, we
universally mitigate the disturbance of natural features by
utilizing the feature shield module H(·) to improve gener-
alization. The overall algorithm of NAPGuard can be seen
in Algorithm 1.

Algorithm 1 NAPGuard Framework
Input: Training set X = {x1, x2, ..., xn}, ground truth
labels {y1, y2, ..., yn}, adversarial patch detection model
Mθ with a feature extractor F(·), real-world images X ∗ =
{x∗

1, x
∗
2, ..., x

∗
n}, feature shield moduleH(·).

Output: Detection Results {ŷ∗1 , ŷ∗2 , ..., ŷ∗n}
1: Initialize the model Mθ and set it to training mode.
2: for the number of epochs do
3: for xi in X do
4: Calculate Lp by Eqn. (2).
5: CalculateLa,Ld by Eqn. (3) andLd is the original

detection loss of the detector.
6: Update θ by backpropagating Eqn. (3).
7: end for
8: end for
9: Set the trained model Mθ to evaluation mode.

10: for x∗
i in X ∗ do

11: x∗
i(s) ← H(x

∗
i )

12: ŷ∗i ←Mθ(x
∗
i(s))

13: end for
14: return {ŷ∗1 , ŷ∗2 , ..., ŷ∗n}

Table S1. The ablation study results (AP@0.5↑) on different loss
terms in our training strategy. “+AFAL” represents our training
strategy, i.e., +αLa + βLp.

Method Base +Lp +La +AFAL

Patch

Non-NAPs

T-SEA [5] 99.42 99.33 99.45 98.32
AdvPatch [16] 87.83 98.53 96.48 96.89
AdvCloak [17] 59.94 87.47 72.64 91.22
AdvTshirt [18] 42.07 83.70 57.34 65.95
AdvTexture [4] 69.51 93.35 70.49 93.71

Type
NAPs

GNAP [3] 68.00 81.03 78.96 88.00
DM-NAP [9] 54.48 90.25 91.14 98.59

LAP [15] 36.23 67.93 52.44 86.13

Mixture Mixture 76.84 88.71 84.94 91.89

B. More Ablation Studies and Discussions
In this section, we provide more ablation studies on differ-
ent loss terms and the choices of hyper-parameters. Further,
we explore the defense potential of our method and pro-
vide more fine-grained results on specific types of adversar-
ial patches.

B.1. Different Loss Terms

First, we investigate the effect of loss terms in our train-
ing strategy. Specifically, we train the patch detector with
loss function Lp, La and αLa + βLp respectively (with Ld

fixed). As shown in Tab. S1, the AP@0.5 shows a signif-
icant rise under Lp and La setting, while combining them
shows further improvement (i.e., for GNAP, +13.03% under
Lp setting, +10.96% under La setting and +20.00% under
αLa + βLp setting). These results empirically demonstrate
that both of the loss terms could improve detector’s perfor-
mance on NAPs.

B.2. Hyper-parameters

In this part, we provide experimental results to support our
choice of hyper-parameters in the training and inference
strategy.

Hyper-parameters of Aggressive Feature Aligned
Learning (AFAL) Strategy.

α and β. Regarding the hyper-parameters α and β, we
argue that they control the balance of detector’s alignment.
In our experiments, we conduct a thorough analysis by vary-
ing the values of α and β to assess their impact on the de-
tector’s capability of detecting NAPs. Specifically, we set
the α as 0.01, 0.2, 0.4, 0.5, 0.6, 0.8, 0.99 and β as 0.1, 1,
10, 100, respectively. As illustrated in Fig. S1, the highest
AP is achieved when α = 0.4 and β = 10. These results
demonstrate our choice of α and β can achieve optimal per-



Figure S1. Hyper-parameters tuning experiments for α and β. The data in the red box represents the highest AP@0.5 values.

(a) Radius = 1/2 image’s width

(b) Radius = 1/4 image’s width

(c) Radius = 1/8 image’s width

Figure S2. Visualization of the filtering results for different radii,
from left to right: original adversarial examples, frequency domain
images, high-pass filtered images, and low-pass filtered images.

Figure S3. Original naturalistic adversarial example and the mask
under different threshold γ, from left to right, 1.0, 2.0 and 3.0,
respectively.

formance within our framework.
Hyper-parameters of Natural Feature Suppressed In-

ference (NFSI) Strategy.
The Radius of RL. In order to determine the appro-

priate radius of the low-pass filter, denoted as RL, we
conduct experiments using three different radii: 1/8, 1/4,
and 1/2 of the image’s width. We visualize the filtering
results to assess the effectiveness of each radius in sep-

arating high-frequency components within the adversarial
patch. As shown in Fig. S2, we observe that using a too
large radius prevents the filter from adequately separating
high-frequency components, resulting in the retention of
unwanted details. On the other hand, employing a too small
radius leads to inaccurate separation, potentially removing
essential natural features. Thus, we set the radius as 1/4 of
the image’s width to provide accurate separation of high-
frequency features within the adversarial patch while main-
taining the essential natural features required for further
analysis.

The Weight γ. Regarding the weight γ that controls the
threshold of region selection, it was set to three different
values in our experiments: 1.0, 2.0, and 3.0. As shown in
Fig. S3, a small threshold (e.g., 1.0) would lead to failure
of effectively identifying the regions that contain the richest
natural features, while a large threshold may include exces-
sively small regions that may have little effect on the over-
all result. Therefore, we set the weight γ as 2.0 to ensure
that the resulting mask accurately selects the important ar-
eas within the adversarial example. This choice ensures that
the resulting mask effectively captures the relevant regions
containing rich natural features, contributing to the overall
effectiveness of the approach.

The Standard Variation σ of Gaussian Kernel. As for
the standard variation σ that controls the smoothing effect
of Gaussian kernel, we conduct quantitative experiments to
determine the optimal γ. Specifically, we test values of
0.5, 1.0, 2.0, 3.0, 4.0, 5.0 and 10.0. For each value, we
evaluate the detection performance on subsets of the testing
set from our GAP dataset, divided based on the attacking
methods. It should be noted that in this experiment, the
detector is enhanced by the AFAL strategy. This enables
us to determine a more optimal σ value, which maximizes
the synergistic performance improvement when using both
strategies simultaneously. As shown in Tab. S2, we observe
that the highest average detection performance is achieved



Table S2. The ablation study results (AP@0.5↑) on σ in our inference strategy. “Average” means the average value of AP@0.5 on NAPs.

σ 0 0.5 1.0 2.0 3.0 4.0 5.0 10.0

Patch Type

Non-NAPs

T-SEA [5] 98.32 98.35 98.37 98.37 98.37 98.63 98.63 98.63
AdvPatch [16] 96.89 96.97 96.97 96.94 96.95 96.95 96.95 96.95
AdvCloak [17] 91.22 92.02 92.30 92.25 92.24 92.22 92.22 92.22
AdvTshirt [18] 65.95 93.98 68.53 69.35 69.53 69.57 69.58 69.60
AdvTexture [4] 93.71 67.11 94.28 94.22 94.20 94.20 94.19 94.19

NAPs

GNAP [3] 88.00 88.10 88.24 88.25 88.27 88.27 88.27 88.23
DM-NAP [9] 98.59 98.61 98.63 98.67 98.66 98.66 98.66 98.66

LAP [15] 86.13 86.09 86.07 86.00 86.07 86.00 86.00 86.00
Average 90.91 90.93 90.98 90.97 91.00 90.98 90.98 90.96

Mixture Mixture 91.89 92.03 92.19 92.21 92.24 92.24 92.24 92.22

Table S3. The detection performance (AP@0.5↑) of YOLOV5 model before and after our defense. Here we use the normal AP@0.5 in
object detection instead of patch detection.

Patch Type (Defense AP↑)
T-SEA AdvPatch AdvCloak AdvTshirt AdvTexture GNAP-Dog1 DM-NAP-Anime LAP-Flower

No Defense 1.20 49.65 28.04 28.35 65.05 35.11 61.18 74.59
Ours+ 78.86 80.15 77.80 75.12 81.11 73.29 71.12 84.29

when σ = 3, i.e., 91.00% AP@0.5 for NAPs on average
and 92.24% AP@0.5 for the mixture dataset.

B.3. Defense Potential

Since our method provides the patches’ locations, it can
serve as a pre-processing stage to defend against adversar-
ial patches. Following the common ”locate-erase-detect”
paradigm, we zero out the detected areas and evaluate the
performance of YOLOV5 model before and after our de-
fense on various patches (as shown in Tab. S3), using the
normal AP for object detection. Results show that our
method (”Ours+”) improves the average defense AP by
44.15% against Non-NAPs and 19.27% against NAPs, val-
idating its potential in defense.

Furthermore, our strategies hold the potential to be in-
tegrated into robustness-enhancing techniques such as ad-
versarial training. By aligning aggressive features and sup-
pressing natural features of generated adversarial examples,
we can encourage the model to focus on robust and gener-
alized features, thereby improving its robustness to unseen
adversarial examples.

B.4. Fine-grained Results

While our method achieves a high average precision
(AP), there are still variations in the detection of certain
patch types. Results in Tab. S4 show that the AP on
GNAP-Penguin, AdvTshirt, GNAP-Cliffing, LAP-Ivysaur
are 68.17%, 69.53%, 80.90% and 82.56% respectively. This
indicates that our method still has progress room on fine-
grained types of adversarial patches.

C. Adaptability Analysis
In this section, we validate the adaptability of our NAP-
Guard framework by applying it to other models. Instead of
using YOLOV5 [7] as the base model, we train the patch de-
tector based on YOLOV3 [13] and YOLOV3 tiny [1] on our
GAP dataset. Then, we apply the AFAL and NFSI strategies
to these detectors and evaluate their performance before and
after using our strategies.

Specifically, due to the limitation of GPU, we reduce the
batch size to 4 for both YOLOV3 and YOLOV3 tiny. Other
settings (hyper-parameters, loss functions and augmenta-
tions) are aligned with the settings described in Sec. E.1.
As for AFAL strategy, we set α = 0.4 and β = 10, which
is consistent with the settings used in our main paper. For
YOLOV3, we use the backbone as the feature extractorF(·)
and utilize its output to calculate the pattern alignment loss
Lp. For YOLOV3 tiny, we utilize the output of the last
convolution layer in the backbone to calculate the pattern
alignment loss Lp. As for NFSI strategy, we set γ = 2, the
standard deviation σ = 3 of a 3×3 Gaussian kernel and the
radius of the circular low-pass filter RL is set as 1/4 of the
image’s width, which are also consistent with the settings
used in our main paper.

Experimental results shown in Tab. S5 demonstrate
the effectiveness of our proposed NAPGuard on detecting
NAPs when applied to other models. Specifically, we ob-
serve a significant increase in AP@0.5 for NAPs based on
YOLOV3, with a notable improvement of +15.79%. Simi-
larly, when applied to YOLOV3 Tiny, our framework yields
a positive impact with an increase of +2.61% AP@0.5 for
NAPs. These results confirm that our framework can adapt



Table S4. The detailed experimental results (AP@0.5↑) of our proposed NAPGuard on fine-grained types of adversarial patches.

Non-NAPs T-SEA 98.37 AdvPatch 96.95 AdvCloak 92.24 AdvTshirt 69.53 AdvTexture 94.20
GNAP-Peacock1 95.65 GNAP-Dog2 99.03 GNAP-Penguin 68.17 DM-NAP-Anime 99.04 LAP-Flower 86.87

NAPs GNAP-Peacock2 96.94 GNAP-ATM1 86.62 GNAP-Bulbul 98.94 DM-NAP-Dog 98.53 LAP-Ivysaur 82.56
GNAP-Dog1 95.21 GNAP-ATM2 91.29 GNAP-Cliffing 80.90 DM-NAP-Princess 98.11 LAP-Shaymin 89.59

Table S5. The experimental results (AP@0.5↑) of our proposed NAPGuard based on YOLOV3 and YOLOV3 tiny. “Base” represents the
base detector directly trained on our GAP dataset.

Patch Type

Method Non-NAPs NAPs

T-SEA [5] AdvPatch [16] AdvCloak [17] AdvTshirt [18] AdvTexture [4] GNAP [3] DM-NAP [9] LAP [15] Mixture

YOLOV3 Base 99.49 90.92 49.57 53.70 33.59 70.59 59.39 13.17 74.05
+Ours 99.47 98.72 80.18 96.09 78.11 72.69 75.30 42.53 81.77

YOLOV3 tiny Base 98.80 50.56 27.79 59.18 56.48 33.36 27.47 16.18 62.83
+Ours 98.90 66.42 26.50 62.72 45.29 34.19 32.38 18.28 64.03

to other object detection models to improve their detection
capabilities for NAPs.

Further, during our experiments, we observe an interest-
ing phenomenon: the effect of our framework on YOLOV3
tiny is comparatively less pronounced than on YOLOV3.
This can be attributed to the limited model complexity of
YOLOv3 Tiny, which has fewer layers and parameters, re-
stricting its ability to fully benefit from our framework.

D. More Details of GAP Dataset
D.1. Motivation

Necessity. Inspired by Ad-YOLO [6], we consider to har-
ness the potential of object detection models for detecting
physical adversarial patches. However, since the adversar-
ial patch detection dataset used in Ad-YOLO is not publicly
available and there are no other open source alternatives, we
begin by constructing our own dataset to train a patch detec-
tor. Furthermore, it is worth noting that the training set of
Ad-YOLO lacks NAPs, which may result in limited gen-
eralization capabilities. To reduce this generalization gap
between NAPs and Non-NAPs, our GAP dataset’s training
set encompasses both of them, which allows the detector to
learn the characteristics of NAPs.

Benchmarking Generalization. Moreover, to study the
generalized detection ability of patch detectors, we include
a greater variety of adversarial patch types in the testing set
compared to the training set. If the training and testing sets
have the same or similar adversarial patch types, the model
may overly rely on the features of these seen patches. This
deliberate choice aims to thoroughly assess the model’s per-
formance when encountering unseen adversarial patches,
thus closely simulating real-world scenarios. By incorporat-
ing diverse adversarial patch types in the testing set, we can
provide a more comprehensive benchmark for the model’s
generalized detection ability, promoting the development of
more robust and generalized detection methods.

D.2. Data Details

D.2.1 Data Acquisition

Datasets. All images used in this dataset are derived from
the testing set of two widely used datasets in object detec-
tion: INRIA-Person [2] and MS COCO [10]. The testing
set of INRIA-Person consists of 288 images. Specifically,
since the adversarial patches are all based on pedestrian de-
tection task, we only select images containing person from
COCO’s validation set (named COCO-person), which con-
tains 1684 images.

Adversarial Patches. GAP contains 25 types of distinct
adversarial patches from 8 methods including 15 NAPs and
10 Non-NAPs, demonstrating the extensive diversity. In
practice, we select 9 patches from GNAP [3], 6 patches
from T-SEA [5], 3 patches each from DM-NAP [9] and
LAP [15], and 1 patch each from [16], AdvCloak [17],
AdvTshirt [18] and AdvTexture [4]. The overall statistics
of our dataset are shown in Fig. 3 in the main paper. More
details of these patches are provided as follows:

• T-SEA [5]: We select 6 types of patches from this method
based on the victim model, namely, T-SEA YOLOV2, T-
SEA YOLOV3, T-SEA YOLOV3 tiny, T-SEA YOLOV4,
T-SEA YOLOV4 tiny and T-SEA YOLOV5. In practice,
for each patch type, we generate 288 adversarial examples
on INRIA-Person and 1000 on COCO-person. Among
these, the adversarial examples generated by the first five
patches are allocated to both the training set and testing
set, following a 4:1 ratio, while those generated by the
last patch are only put into the testing set to evaluate the
generalization.

• AdvPatch [16]: We select the patch generated by mini-
mizing the objectness score, which achieves the best at-
tacking performance in the paper. We generate 100 ad-
versarial examples on INRIA-Person and 150 adversarial
examples on COCO-person. All of these images are in-



cluded in the testing set for evaluation.
• AdvCloak [17]: We select the patch trained to attack the

YOLOV2 model, which exhibits the best attacking perfor-
mance. We generate 100 adversarial examples on INRIA-
Person, and all of them are placed in the testing set.

• AdvTshirt [18]: We select the patch from this method
that demonstrates the best attacking performance. We
generate 100 adversarial examples on INRIA-Person, and
all of these examples are included in the testing set.

• AdvTexture [4]: We select the TC-EGA patch from this
method, which has the best attacking performance. We
generate 100 adversarial examples on INRIA-Person and
150 adversarial examples on COCO-person. All of these
images are included in the testing set for evaluation.

• GNAP [3]: We select 9 patches from this method
based on different initial class, namely, GNAP-
Dog1, GNAP-Dog2, GNAP-Peacock1, GNAP-Peacock2,
GNAP-ATM1, GNAP-ATM2, GNAP-Cliffing, GNAP-
Bulbul and GNAP-Penguin. For each of GNAP-Dog1 and
GNAP-Dog2, we generate 288 adversarial examples on
INRIA-Person and put them to both the training set and
testing set, following a 4:1 ratio. For the other patches,
we generate 100 adversarial examples for each type on
INRIA-Person and put them into the testing set.

• DM-NAP [9]: We select 3 patches from this method
based on different initial class, namely, DM-NAP-Dog,
DM-NAP-Princess, DM-NAP-Anime. We generate 100
adversarial examples for each type on INRIA-Person and
all of these examples are included in the testing set.

• LAP [15]: We select 3 patches from this method based on
different initial class, namely, LAP-Flower, LAP-Ivysaur,
LAP-Shaymin. We generate 100 adversarial examples for
each type on INRIA-Person and all of these examples are
placed in the testing set.

D.2.2 Data Properties

Patch Scale. For AdvTexture [4], GNAP [3], DM-NAP [9]
and LAP [15], we set the patch scale as 0.2. For T-SEA [5],
AdvPatch [16], AdvCloak [17] and AdvTshirt [18], we set
the patch scale as 0.15.

Image Size. All images are stored in PNG format with
a fixed size of 416×416 pixels. For Non-NAPs, image
padding is applied to ensure alignment with the fixed size.
For NAPs, image resizing is performed to achieve align-
ment. These settings are consistent with the methodologies
outlined in the respective papers.

Annotations. Instead of heavy human annotations, all
of the adversarial examples in our GAP dataset are auto-
matically annotated during the generation process, where
we can directly obtain and save their positions within the
image. Every adversarial patch is located with a bounding-
box location.

E. More Experimental Details

In this section, we first list out the training details of the
patch detector to facilitate reproducibility. Then, we pro-
vide more details about our compared baselines.

E.1. Implementation Details

Models. We train the patch detector utilizing the common
used object detection model (e.g., YOLOV5 [7]). First, we
convert the model to a single-class model and set the 0 cat-
egory as “patch”. Then, we train the model on our GAP
dataset and obtain a patch detector. Specifically, the back-
bone of YOLOV5 is based on the Darknet-53 architecture
and we use YOLOV5s model, which has a smaller model
size and fewer parameters. For YOLOV5, we use the back-
bone as the feature extractor F(·) and utilize its output to
calculate the pattern alignment loss Lp.

Hyper-parameters. The training stage involves a 3
epochs warm-up phase to gradually increase the learning
rate from a lower value to the initial learning rate. During
training, an SGD optimizer is used with an initial learning
rate of 0.01, a momentum value of 0.937, a weight decay of
0.0005 and a final learning rate 0.01. We set the batch size
is 16, the image size as 416 to align with the GAP dataset,
and the detector is trained for a maximum of 200 epochs.

Loss Functions. The original detection loss consists of
three parts: the bounding box loss Lbbox, the class loss Lcls

and the objectness loss Lobj . The weights for these loss
are 0.05, 0.5 and 1.0, respectively, to determine the relative
importance of each loss component during the training pro-
cess. Since the detector is a single-class model, the class
loss Lcls will always be equal to zero.

Augmentations. The parameters hsvh, hsvs, and hsvv
are used to control the augmentation of image HSV (Hue,
Saturation, Value) values during training, which are set to
0.015, 0.7 and 0.4, respectively. Additionally, image shift-
ing is applied during training, with a magnitude equal to 0.1
times the image size. Moreover, we introduce the hyper-
parameter scale = 0.5 to control scale jitter, and augment
the data using Mosaic, which combines the original image
with three random images.

It is important to clarify that the loss functions and
augmentations mentioned in our work already exist in the
YOLOv5 framework. We have not introduced any new op-
erations or modifications to the existing implementation,
except for our method. The purpose of providing a list of
these settings is solely to enhance the reproducibility of our
experiments.

E.2. Compared Baselines Details

In this paper, we choose four compared baselines:
LGS [12], Ad-YOLO [6], SAC [11] and PatchZero [19].
Here, we provide more details about these methods.



Figure S4. Generated masks by LGS [12] under different thresh-
old. (a) and (d): Original adversarial examples, sampled from
GAP. (b) and (e): Masks under 0.1 threshold. (c) and (f): Masks
under 0.17 threshold. Our adjustment improves the precision for
detecting adversarial patches in our dataset. Best in view.

• LGS [12]. LGS (Local Gradients Smoothing) is an image
analysis method to estimate noise location in gradient do-
main and erase their influence. In practice, we set the
block size to 15, overlap to 5 and smoothing factor to 2.3,
which aligns with the experimental setting of the paper.
We find that the threshold of 0.1 specified in the exper-
imental setting is too small for our dataset, resulting in
the inclusion of large irrelevant regions in the generated
masks. To address this issue and improve performance
on our dataset, we make an adjustment by increasing the
threshold to 0.17 (as shown in Fig. S4).

• APE [8]. APE (Adversarial Patch-Feature Energy) is
an image analysis method to defend against adversarial
patches by exploiting common deep feature characteris-
tics. In practice, we use the YOLOV2 model as the vanilla
detector and select 1, 4, 5 layers to generate masks, which
aligns with the experimental setting of the paper.

• Ad-YOLO [6]. Ad-YOLO (Adversarial YOLO), similar
to our method, utilizes an object detection model to detect
adversarial patches. However, Ad-YOLO obtains a patch
detector by including a new category called ”patch” at the
end of the category list. As a result, the detector encom-
passes a total of 81 classes.
Given that the training process of Ad-YOLO incorpo-
rates the original labels of the clean dataset, we make
adjustments to our GAP dataset accordingly and obtain
the GAP-adjusted dataset. Thus, in the GAP-adjusted
dataset, we add the original labels of the clean images that
correspond to the adversarial examples. Further, we in-
clude the corresponding clean images in our training set,
which aligns with the construction of training set of Ad-
YOLO. The training settings of Ad-YOLO are consistent
with our approach (as shown in Sec. E.1).

• SAC [11]. SAC (Segment and Complete) utilizes an im-
age segmentation model (i.e., the U-Net [14]) to detect
and remove adversarial patches. We train the patch seg-
menter according to the process provided in the original
paper. First, we generate a set of adversarial examples by
attacking the base object detector (i.e., Faster R-CNN).
Since our GAP dataset is based on INRIA-Person and
MS COCO, we generate adversarial examples on both
of these dataset. Then, we use these images to train the
patch segmenter. Further, we robustify the segmenter
with the self adversarial training. Following the settings
in the original paper, we train the patch segmenters for
five epochs by using RMSprop optimizer with an initial
learning rate of 10−4, momentum 0.9, weight decay 10−8

and batch size 16. For self adversarial training, we train
the segmenter for five epochs with batch size 10 (reduce
due to GPU constraints), λ = 0.3 using PGD attacks
with 200 iterations, step size α = 0.01 and patch size
100 × 100, where λ controls the weight between clean
and adversarial images.

• PatchZero [19]. Similar to SAC, PatchZero also utilizes
an image segmentation model (i.e., the PSPNet [20]) to
detect and remove adversarial patches. We train the patch
detector according to the two-stage training provided in
the original paper. First, we attack the downstream de-
tector (i.e., Faster R-CNN) and generate a mixture of be-
nign and adversarial images to train the patch detector.
Since our GAP dataset is based on INRIA-Person and
MS COCO, we generate adversarial examples on both
of these dataset. Then, we generate adversarial patches
at every training step with updated model weights. For
the two-stage training, we use the Adam optimizer with a
learning rate of 0.0001 and set the batch size as 12 (reduce
due to GPU constraints). Since the authors did not report
the training epoch in their paper, we train both stages for
five epochs. For attacking, we use the Masked PGD at-
tack with a perturbation strength of 0.3, step size of 0.1,
patch size 120×120 and 100 iterations, which aligns with
the original paper.

References
[1] Pranav Adarsh, Pratibha Rathi, and Manoj Kumar. Yolo v3-

tiny: Object detection and recognition using one stage im-
proved model. In 2020 6th international conference on ad-
vanced computing and communication systems (ICACCS),
pages 687–694. IEEE, 2020. 3

[2] N. Dalal and B. Triggs. Histograms of oriented gradients for
human detection. 2005 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition (CVPR’05), 1:
886–893 vol. 1, 2005. 4

[3] Yuqing Hu, Jun-Cheng Chen, Bo-Han Kung, K. Hua, and
Daniel Stanley Tan. Naturalistic physical adversarial patch
for object detectors. 2021 IEEE/CVF International Confer-



ence on Computer Vision (ICCV), pages 7828–7837, 2021.
1, 3, 4, 5

[4] Zhan Hu, Siyuan Huang, Xiaopei Zhu, Xiaolin Hu, Fuchun
Sun, and Bo Zhang. Adversarial texture for fooling person
detectors in the physical world. 2022 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages
13297–13306, 2022. 1, 3, 4, 5

[5] Hao Huang, Ziyan Chen, Huanran Chen, Yongtao Wang, and
Kevin Zhang. T-sea: Transfer-based self-ensemble attack
on object detection. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
20514–20523, 2023. 1, 3, 4, 5

[6] Nan Ji, YanFei Feng, Haidong Xie, Xueshuang Xiang,
and Naijin Liu. Adversarial yolo: Defense human detec-
tion patch attacks via detecting adversarial patches. ArXiv,
abs/2103.08860, 2021. 4, 5, 6

[7] Glenn Jocher, Ayush Chaurasia, Alex Stoken, Jirka Borovec,
NanoCode012, Yonghye Kwon, Kalen Michael, TaoXie, Ji-
acong Fang, imyhxy, Lorna, (Zeng Yifu), Colin Wong, Ab-
hiram V, Diego Montes, Zhiqiang Wang, Cristi Fati, Je-
bastin Nadar, Laughing, UnglvKitDe, Victor Sonck, tkianai,
yxNONG, Piotr Skalski, Adam Hogan, Dhruv Nair, Max
Strobel, and Mrinal Jain. ultralytics/yolov5: v7.0 - YOLOv5
SOTA Realtime Instance Segmentation, 2022. 3, 5

[8] Taeheon Kim, Youngjoon Yu, and Yong Man Ro. Defending
physical adversarial attack on object detection via adversar-
ial patch-feature energy. In Proceedings of the 30th ACM
International Conference on Multimedia, pages 1905–1913,
2022. 6

[9] Shuo-Yen Lin, Ernie Chu, Che-Hsien Lin, Jun-Cheng Chen,
and Jia-Ching Wang. Diffusion to confusion: Naturalistic
adversarial patch generation based on diffusion model for
object detector, 2023. 1, 3, 4, 5

[10] Tsung-Yi Lin, M. Maire, Serge J. Belongie, James Hays, P.
Perona, Deva Ramanan, Piotr Dollár, and C. L. Zitnick. Mi-
crosoft coco: Common objects in context. pages 740–755,
2014. 4

[11] Jiangjiang Liu, Alexander Levine, Chun Pong Lau, Rama-
lingam Chellappa, and S. Feizi. Segment and complete:
Defending object detectors against adversarial patch attacks
with robust patch detection. 2022 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages
14953–14962, 2021. 5, 6

[12] Muzammal Naseer, Salman Hameed Khan, and F. Porikli.
Local gradients smoothing: Defense against localized adver-
sarial attacks. 2019 IEEE Winter Conference on Applications
of Computer Vision (WACV), pages 1300–1307, 2018. 5, 6

[13] Joseph Redmon and Ali Farhadi. Yolov3: An incremental
improvement. arXiv preprint arXiv:1804.02767, 2018. 3

[14] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-
net: Convolutional networks for biomedical image segmen-
tation. In Medical Image Computing and Computer-Assisted
Intervention–MICCAI 2015: 18th International Conference,
Munich, Germany, October 5-9, 2015, Proceedings, Part III
18, pages 234–241. Springer, 2015. 6

[15] Jia Tan, Nan Ji, Haidong Xie, and Xueshuang Xiang. Legiti-
mate adversarial patches: Evading human eyes and detection

models in the physical world. In Proceedings of the 29th
ACM international conference on multimedia, pages 5307–
5315, 2021. 1, 3, 4, 5

[16] Simen Thys, Wiebe Van Ranst, and T. Goedemé. Fooling au-
tomated surveillance cameras: Adversarial patches to attack
person detection. 2019 IEEE/CVF Conference on Computer
Vision and Pattern Recognition Workshops (CVPRW), pages
49–55, 2019. 1, 3, 4, 5

[17] Zuxuan Wu, Ser-Nam Lim, Larry S Davis, and Tom Gold-
stein. Making an invisibility cloak: Real world adversar-
ial attacks on object detectors. In Computer Vision–ECCV
2020: 16th European Conference, Glasgow, UK, August 23–
28, 2020, Proceedings, Part IV 16, pages 1–17. Springer,
2020. 1, 3, 4, 5

[18] Kaidi Xu, Gaoyuan Zhang, Sijia Liu, Quanfu Fan, Mengshu
Sun, Hongge Chen, Pin-Yu Chen, Yanzhi Wang, and Xue
Lin. Adversarial t-shirt! evading person detectors in a phys-
ical world. pages 665–681, 2019. 1, 3, 4, 5

[19] Ke Xu, Yao Xiao, Zhaoheng Zheng, Kaijie Cai, and Ram
Nevatia. Patchzero: Defending against adversarial patch at-
tacks by detecting and zeroing the patch. In Proceedings of
the IEEE/CVF Winter Conference on Applications of Com-
puter Vision, pages 4632–4641, 2023. 5, 6

[20] Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang
Wang, and Jiaya Jia. Pyramid scene parsing network. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 2881–2890, 2017. 6


	. Overall Algorithm of NAPGuard
	. More Ablation Studies and Discussions
	. Different Loss Terms
	. Hyper-parameters
	. Defense Potential
	. Fine-grained Results

	. Adaptability Analysis
	. More Details of GAP Dataset
	. Motivation
	. Data Details
	Data Acquisition
	Data Properties


	. More Experimental Details
	. Implementation Details
	. Compared Baselines Details


