
1. Demonstrating Scale-invariance of SaCo
We prove the scale-invariance of our SaCo, as evidenced by
the equation:

SaCo(aS + b) = SaCo(S), (1)

valid for any positive real number a and any real number
b. In this context, S denotes the set of salience scores at-
tributed to the input pixels, and aS + b represents a lin-
ear transformation applied to each pixel in the set S. The
computation of our SaCo involves summing up the differ-
ences in salience scores for all pairs of subsets (Gi, Gj).
The assigned weight in the algorithm for each pair is
s(Gi) − s(Gj) if ∇pred(x,Gi) ≥ ∇pred(x,Gj), and it
is −(s(Gi) − s(Gj)) otherwise. When a linear transfor-
mation is applied to the salience scores such that s′(Gi) =
as(Gi)+b, this results in a corresponding adjustment of the
weight. The modified weight can be represented as:

s′(Gi)− s′(Gj) = (a · s(Gi) + b)− (a · s(Gj) + b)

= a · (s(Gi)− s(Gj)),
(2)

and

−(s′(Gi)− s′(Gj)) = −((a · s(Gi) + b)− (a · s(Gj) + b))

= −a · (s(Gi)− s(Gj)),
(3)

Consequently, the aggregate weight totalWeight′ for the
transformed scores becomes:

totalWeight′ = a · totalWeight. (4)

Given that the direction of each weight remains unchanged,
and its magnitude is scaled by a, we derive:

F ′ = a · F. (5)

Subsequently, considering the SaCo score is computed as
F ′

totalWeight′ , we have:

SaCo(aS + b) =
F ′

totalWeight′

=
a · F

a · totalWeight

=
F

totalWeight

= SaCo(S).

(6)

Hence, SaCo demonstrates scale-invariance. The results of
SaCo remain unaffected by the scale of salience scores, en-
suring its robustness against post-processing steps such as
normalization or re-scaling. Note that our proof of scale-
invariance does not necessarily hinge on a being positive.
Yet, if a is negative, the orientation of salience scores gets
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Figure 1. Correlation coefficients of SaCo outcomes with different
values of K.

reversed, resulting in unreasonable explanation outcomes.
Under this circumstance, although SaCo retains its scale-
invariance property, the negative value of a may lead to a
diminished score due to its effect on the partition of pixel
subsets. This occurs because the arrangement of these sub-
sets relies on the ordered rankings of the salience scores.

2. Empirical Study on Choices of K
We explore SaCo’s sensitivity to different K values in our
study, where K represents the number of subsets into which
input pixels are divided. The experiments are conducted
with K set to 5, 10, and 20. Figure 1 showcases the cor-
relation among SaCo outcomes for these varying K val-
ues. This experiment is performed on ImageNet and the
results are averaged across three Vision Transformer mod-
els and ten explanation methods. In our analysis, a corre-
lation score of 1 indicates a perfect correlation, whereas a
score of 0 implies the absence of any correlation. The pos-
itive correlation between K=5 and K=10, demonstrated
by a coefficient of 0.6101, indicates a moderate similar-
ity in SaCo results for these two settings. This suggests
that a coarse partitioning into five subsets can still capture
similar salience distinctions as a more detailed partitioning
into ten subsets. The correlation increases when compar-
ing K=10 and K=20. This stronger correlation might be
attributed to the fact that splitting into ten or twenty sub-
sets both provides a detailed view of the salience scores,
capturing subtler nuances in the model’s behavior. These
positive correlations demonstrate that while the granularity
of subset division (as determined by K) can play a role in
the final evaluation, the fundamental principles provided by
our SaCo remain consistent.

3. Experimental Setup
3.1. Datasets

CIFAR-10 and CIFAR-100. CIFAR-10 and CIFAR-100
[10] are two widely used image classification datasets, each
containing 60,000 32× 32 color images. CIFAR-10 has 10
classes, while CIFAR-100 has a more challenging setting
with 100 classes. Both datasets are split into 50,000 train-
ing and 10,000 testing images. In this paper, we evaluate
explanation methods on the testing sets.



ImageNet. ImageNet dataset [14] is a large-scale bench-
mark for image classification. In this work, we evaluate
explanation methods on the ImageNet validation set, which
comprises 50,000 high-resolution images across 1,000 dis-
tinct classes. Each class contains roughly the same number
of images, ensuring a balanced benchmark.

3.2. Explanation Methods

3.2.1 Gradient-based methods

Integrated Gradients. Integrated Gradients (IG) [17] cal-
culates contributions by integrating gradients along a path
from a baseline input x0 to the original input x:

IG(x,x0) = (x− x0)⊙
∫ 1

0

∂f(x0 + α(x− x0))

∂x
dα,

(7)
where f represents the classification model. In practice, the
integral is approximated using the Riemann Sum over a lin-
ear interpolation path.
Grad-CAM. Instead of the original input, Grad-CAM [15]
utilizes the attention map in the last layer. Following the
prior work [6], we perform multi-head integration based on
gradient information.

3.2.2 Attribution-based Methods

LRP. LRP [4] starts from the model’s output and propagates
relevance scores backward up to the input image. This prop-
agation adheres to a set of rules defined by the Deep Taylor
Decomposition theory [11].
Partial LRP. Partial LRP [18] also backpropagates rele-
vance scores, but uniquely, it uses the relevance map from a
specific intermediate layer as the final explanation. In line
with convention [5, 6], we choose the relevance map asso-
ciated with the attention map in the last layer.
Transformer Attribution. Transformer Attribution [6] is
an attribution-based method specifically designed for Trans-
former models. It first computes relevance scores via the
LRP and then integrates these scores with attention maps to
produce an explanation.
Conservative LRP. Conservative LRP [2] introduces spe-
cialized Layer-wise Relevance Propagation rules for atten-
tion heads and layer norms in Transformer models. This is
designed to implement conservation, a common property of
attribution techniques.

3.2.3 Attention-based Methods

Raw Attention. This method [9] extracts the multi-head
attention map from the last layer of the model and reshapes
the row corresponding to the [CLS] token into the 2D in-
put space. An interpretation is further derived by averaging
across different heads.

Rollout. Rollout [1] interprets the information flow within
Transformers from the perspective of Directed Acyclic
Graphs (DAGs). It traces and accumulates the attention
weights across layers using a linear combination strategy.
Transformer-MM. Transformer-MM [5] is a general inter-
pretation framework applicable to diverse Transformer ar-
chitectures. It aggregates attention maps with correspond-
ing gradients to generate class-specific explanations.
ATTCAT. ATTCAT [13] is a Transformer explanation tech-
nique using attentive class activation tokens. It employs a
combination of encoded features, their associated gradients,
and attention weights to produce confident explanations.

3.3. Evaluation Metrics

Area Under the Curve (AUC) ↓. This metric calculates the
Area Under the Curve (AUC) corresponding to the model’s
performance as different proportions of input pixels are per-
turbed [3]. To elaborate, we first generate new data by
gradually removing pixels in increments of 5% (from 0%
to 100%) based on their explanation weights. The model’s
accuracy is then assessed on these perturbed data, result-
ing in a sequence of accuracy measurements. The AUC is
subsequently computed using this sequence.
Area Over the Perturbation Curve (AOPC) ↑. AOPC
[7, 12] measures the changes in output probabilities w.r.t.
the predicted label after perturbations:

AOPC =
1

|K|
∑
k∈K

(p̂(y|x)− p̂(y|xk)), (8)

where K = {0, 10, ..., 90, 100} is a set of perturbation lev-
els, p̂(y|x) estimates the probability for the predicted class
given a sample x, and xk is the perturbed version of image
x, from which the top k% pixels ranked by salience scores
are eliminated.
Log-odds score (LOdds) ↓. LOdds [13, 16] averages the
difference between negative logarithmic probabilities on the
predicted label before and after masking k% top-scored pix-
els over perturbations K:

LOdds = − 1

|K|
∑
k∈K

log
p̂(y|x)
p̂(y|xk)

. (9)

The notations are the same as in Eq. (8).
Comprehensiveness (Comp.) ↓. Comprehensiveness [8]
is also referred to as the negative perturbation test. This
examines how the removal of supposedly less important
input pixels would affect the model’s output. Concretely,
Comprehensiveness gauges the shifts in output probabilities
w.r.t. the predicted label after the least important features
have been excluded.



4. Enlarged Graphs
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Figure 2. Evaluation results for existing explanation methods as
well as Random Attribution, under various metrics. This graph
presents results on CIFAR-10 averaged over three Transformer
models.
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Figure 3. Evaluation results for existing explanation methods as
well as Random Attribution, under various metrics. This graph
presents results on CIFAR-100 averaged over three Transformer
models.
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Figure 4. Evaluation results for existing explanation methods as
well as Random Attribution, under various metrics. This graph
presents results on ImageNet averaged over three Transformer
models.
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