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1. One-Prompt Data
1.1. Data Source

We provided the details of our data source on our website.

1.2. Data Preprocessing

The One-Prompt Model primarily focuses on processing 2D
inputs with a concentration on single-target segmentation.
In the case of 3D images, we extract the 2D mid-slice from
the 3D volume along all axes. For tasks involving multiple
segmentation targets, each target is treated as an individual
task for predicting a binary segmentation mask. During the
inference stage for predicting multiple targets, such as in
the ’segment everything’ setting, we predict a soft segmen-
tation mask with a fixed threshold (averaging 0.5) to filter
out uncertain predictions.

The original 3D datasets contain a variety of CT and
MRI images stored in DICOM, nrrd, or mhd formats. For
ensuring uniformity and compatibility, all images, regard-
less of modality, were converted to the widely used NifTI
format. This conversion included grayscale images such as
X-Ray and Ultrasound. RGB images depicting endoscopy,
dermoscopy, fundus, and pathology, all converted into the
PNG format.

Notably, image intensities varied significantly across
modalities. For example, CT images ranged from -
2000 to 2000, MRI values ranged from 0 to 800, en-
doscopy/ultrasound images from 0 to 255, and some modal-
ities were already in the 0 to 1 range. To make all this data
work together, we did some normalization steps for each
type. Intensity normalization was systematically conducted
to establish a shared intensity range. The default setting for
all modalities, during training and inference, each image is
normalized independently by first subtracting its mean and
then dividing by its standard deviation. For MRI, X-Ray,
ultrasound, mammography, and Optical Coherence Tomog-
raphy (OCT) images, we trimmed intensity values to fall
between the 0.95th and 99.5th percentiles before the nor-
malization. If cropping leads to a 25% or more average size
decrease, a mask for central non-zero voxels is generated,
and normalization is confined to this mask, disregarding
surrounding zero voxels. For CT images, we first normal-
ized Hounsfield units using window width and level values
before the standard normalization. In addition, since the in-
tensity values are quantitative and reflect physical properties
of the tissue in CT images. we conduct a global normaliza-
tion scheme that is applied to all images. In specific, we use
the 0.5th and 99.5th percentiles of the foreground voxels for
clipping as well as the global foreground mean and standard

deviation for the normalization.
To standardize the image size, we first crops the pro-

vided samples to their non-zero region, then uniformly re-
size them to 256 x 256. During the resizing process, we
used bi-cubic interpolation for images and nearest-neighbor
interpolation for masks, ensuring smooth standardization
and compatibility across all images. On 3D images, we gen-
erally operate on the two axes with the highest resolution.
If all three axes are isotropic, the two trailing axes are used
for slice extraction. The channel is replicated threefold for
the consistency processing. For slice-based processing, no
resampling along the out-of-plane axis is required. In our
experiments, we observed that maintaining a higher reso-
lution for the image and processing it using a sliding win-
dow approach (splitting a large image into smaller patches,
processing each patch individually, and then combining the
results) can lead to quantitative improvements. However,
we did not apply it in our comparison experiments as our
primary focus in these experiments was to showcase the al-
gorithmic contributions. Various engineering tricks can be
easily applied over the algorithm to enhance results in prac-
tical applications after then.

Masks with multiple classes are processed to individual
masks for each class. Masks with multiple connected com-
ponents were dissected. We keep the original masks in sit-
uations where masks have only one component. Addition-
ally, we exclude masks where the target area is less than
0.153% of the total image, equivalent to areas smaller than
100 pixels in a resized 256 × 256 resolution. This deliber-
ate decision ensures that the dataset only includes signifi-
cant and well-defined target areas. This standardized pre-
processing pipeline is consistently applied across all com-
pared methods to ensure a fair and unbiased comparison.

1.3. Data Augmentation

During training, we employ a range of data augmentation
techniques, all dynamically computed on the CPU. Spatial
augmentations are applied to 2D images or slices, encom-
passing rotations, scaling, Gaussian noise, Gaussian blur,
adjustments of intensities and contrast, simulation of low
resolution, gamma correction, and flipping. For enhanced
image variability, most augmentations involve varying pa-
rameters randomly from predefined ranges. The application
of these augmentations is stochastic, adhering to predefined
probabilities. We maintain consistent parameters across dif-
ferent datasets. Importantly, each augmentation is individu-
ally applied to the template sample and the query sample.

Details of the augmentation are shown below:
1. Rotation: Rotation is applied with a probability of 0.15



to all images. The angle of rotation is uniformly sampled
from [-25, 25].

2. Scaling: Scaling is implemented via multiplying coor-
dinates with a scaling factor. Thus, scale factors smaller
than one result in a ”zoom out” effect, while values
larger than one result in a ”zoom in” effect. The scal-
ing factor is uniformly sampled from [0.7, 1.4]. Scaling
is applied with a probability of 0.15.

3. Gaussian Noise: Zero-centered additive Gaussian noise
is independently added to each sample. This augmenta-
tion has a probability of 0.15. The variance of the noise
is drawn from [0, 0.1], considering that intensities in all
samples are close to zero mean and unit variance due to
intensity normalization.

4. Gaussian Blur: Blurring is applied with a probability
of 0.15 per sample. On each task, blurring occurs with
a probability of 0.5 for each modality. The size of the
Gaussian kernel is uniformly sampled from [0.5, 1.5] for
each modality.

5. Intensities: Image intensities are either multiplied by a
factor uniformly sampled from [0.65, 1.2] with a proba-
bility of 0.15 or flipped using 1 − image for each. No-
tably, the intensity augmentation is not applied to the la-
bels. After the multiplication, the values will be clipped
to their original value range.

6. Low Resolution: Applied with a probability of 0.25 per
sample and 0.5 per associated modality, this augmenta-
tion downsamples triggered modalities by a factor uni-
formly sampled from [1, 2]. We use nearest neighbor
interpolation for downsampling and then sample them
back up to their original size with cubic interpolation.

7. Gamma Augmentation: Gamma Augmentation is ap-
plied With a probability of 0.15. First, image intensities
are scaled to a range of 0 to 1. Then, a nonlinear inten-
sity transformation is implemented as xnew = xγ

old, with
γ uniformly sampled from [0.7, 1.5]. The intensities are
subsequently scaled back to their original value range.
With a probability of 0.15, this augmentation is applied
following the flip intensities as described above.

8. Spacial Flip: All samples are flipped with a probability
of 0.5 along all axes.

2. Discussion of Related Tasks

2.1. Task-tailored Medical Image Segmentation
Models

Unlike natural image segmentation, medical image segmen-
tation has historically relied on task-tailored models, which
are still widely used in both academia and clinical practice
[2, 3, 26]. Task-tailored models offer clear advantages, be-
cause of the model optimization based on the unique char-
acteristics of each specific task, resulting in higher perfor-
mance. The main rationale behind this lies in the signifi-

cant differences between medical images compared to nat-
ural images. Different medical images, like colorful fundus
images and abdominal MRI images exhibit distinct features.
Fundus images contain ambiguous structures like the optic
cup with smooth contours, while abdominal MRI images
depict organs like the pancreas, which have clear boundaries
but complex structures. As a result, task-tailored models
can achieve higher performance by specifically addressing
the unique challenges of each task. For instance, uncertain-
aware modules have been utilized to effectively handle the
ambiguity associated with the optic cup in fundus images
[12]. Additionally, dynamic convolution kernels have been
proposed to adapt to the distorted structure of the pancreas
in abdominal MRI images [9]. It is worth noting that the
process of designing a unique model for each dataset in
task-tailored models can be highly labor-intensive. Addi-
tionally, some tasks may have limited annotated data avail-
able for training well-performing models.

2.2. Interactive Segmentation on Medical Images

In medical image segmentation, an interactive system that
allows clinicians to prioritize areas of interest provides a
more immersive and personalized experience. In a single
fundus image, for example, there are often complex and
overlapping structures such as vessels, optic disc, optic cup,
and melanoma. Interactive segmentation can greatly assist
clinicians in efficiently differentiating target tissues from
these intricate structures. However, most previous methods
use task-tailored models. These models take a task-specific
query image and a user-provided prompt to predict the tar-
get on the image based on the given prompt. A task-tailored
interactive model is essentially unnecessary in medical im-
age segmentation. Since the organs on a specific kind of
image are often limited, it suffices to use a task-tailored
model to segment all the organs and select the target based
on user-provided prompts. This can be achieved through
simple post-processing and does not require model-level in-
teraction.

The recent success of the Segment Anything Model
(SAM) [14] in interactive nature image segmentation has
sparked renewed interest in the field. Many methods
[4, 7, 22, 27] are being developed to fine-tune SAM for
medical image segmentation, adapting its interactive ap-
proach to this domain. Few of these methods are proposed
as universal interactive models [4, 16], that are able to adapt
to the unseen tasks in the inference. However, they still ac-
quire the uses to provide the prompt for each given query
image, which is time and effort consuming in the practical
usage.

2.3. Few/Zero-shot Image Segmentation

Few and zero methods often refer to the methods that
can adapt to new tasks from few training examples, by



fine-tuning pretrained networks. Though its wide appli-
cation in both natural image[19, 23] and medical image
[8, 15, 20, 25], they often perform on the specific pre-
trained model on a specific task, and then generalize to new
classes in a particular subdomain, like abdominal CT or
MRI scans. In addition, they contain the re-training proce-
dure that needs to update the model parameters again based
on the given samples. Recent progress in medical image
segmentation[1] extend the method by training a founda-
tion model on varies tasks, then adapt to the unseen tasks
during the inference without training.

However, this approach poses challenges in real clinical
practice as it relies solely on segmentation labels to spec-
ify the task. Unfortunately, segmentation labels are un-
available in many cases. Additionally, it demands multi-
ple samples as support to achieve satisfactory performance.
Our model distinguishes itself by requiring only a single
prompted sample as a template to adapt to unseen tasks.
Users can provide flexible sparse prompts beyond segmen-
tation to address a variety of clinical tasks.

3. Prompt Details
We offer four distinct prompt types which can deal with var-
ious clinical tasks. An illustration of our prompts is pre-
sented in Fig. 1.

3.0.1 Doodle Prompt

Doodle accepts a sequence of user-drawn doodles. The doo-
dles can be categorized to one positive doodle and one nega-
tive doodle. The positive doodles are supposed to be drawn
over the anatomies, while the negative doodles are drawn
outside of the anatomies. We represent the doodles by a
series of sampled points. Overlapping points are only in-
cluded once. All of the points are concatenated into a vector.
Each point is associated with a prompt label that indicates
whether it is positive or negative. Then we use positional
encoding to embed the positive and negative point coordi-
nates to prompt embedding p1 and p2 respectively.

3.0.2 SegLab Prompt

SegLab allows the user to provide a segmentation mask as
the prompt. In order to abstract the segmentation prompt
into an embedding, we train an autoencoder-based structure
learning to restore the given segmentation, and use its en-
coded embedding as the prompt.

Specifically, we concatenate the supportive image and
the given segmentation mask. Then we tokenize the input
as a sequence of discrete tokens obtained by an encoder.
We find using this way to represent the binary segmentation
map will be more efficient than representing it in the con-
tinuous space. Following [21], we use the image tokenizer

learned by discrete variational autoencoder (dVAE). There
are two modules during visual token learning, namely, tok-
enizer and decoder. The tokenizer maps image pixels into
discrete tokens according to a visual codebook. The de-
coder learns to reconstruct the input segmentation based on
the visual tokens. In order to train the discrete latent visual
tokens, we use Gumbel-softmax relaxation [11] to train the
model parameters. We tokenize each image to a 14 × 14
grid of visual tokens, and set the vocabulary size as 8192.

This autoencoder is trained on our training set and
four extra unlabeled datasets. These are the RadImageNet
dataset[18], a large-scale collection containing 1.35 million
radiology images (CT, MRI, US) covering a wide range of
organs such as the ankle/foot, brain, hip, knee, shoulder,
spine, abdomen, pelvis, chest, pelvis, and thyroid. The
EyePACS dataset[5], containing 88,702 color fundus im-
ages captured under various conditions by various devices
at multiple primary care sites. The BCN-20000 dataset[6]
and the HAM-10000[24] dataset, containing approximately
30,000 dermoscopic images with melanoma or nevus on the
images.

3.0.3 Click Prompt

Click allows the user to click some regions over the image as
the prompts. The point prompts can be categorized into two
types: positive points indicate foreground regions, and neg-
ative points indicate background regions. The users need to
provide at least one positive point when prompting. In this
case, no positional encoding will be added to the learnable
embedding which represent the background (i.e. p2).

3.0.4 BBox Prompt

BBox allows the user to select some regions with bounding
box as the prompt. The users are supposed to ensure that
the major part of the target is covered by the BBox, but do
not need to ensure that the whole object is in the BBox.
Following SAM [14], we represent one BBox by its left-top
and right-bottom corner points, and use them as two prompt
embedding respectively.

3.1. Prompt Simulation

In this manuscript, we simulate prompts to compare them
with interactive segmentation models and test the model
performance under different prompt qualities. In order to
simulate the prompts with different qualities, we first gen-
erate Oracle prompts from the ground truth. On Click and
BBox prompts, these prompts are typically the center point
of the object or the smallest box covering the object. In
cases where we aim to segment a larger tissue (e.g., op-
tic disc) that encompasses a smaller inner tissue (e.g., optic
cup), we generate the point with the largest sum of distances
between the boundary of the outer tissue and the boundary



Figure 1. Typical user-cases employing four prompt types to address diverse medical segmentation tasks. The prompts flexibility enables
the easy adaption for various clinical practices.

of the inner tissue to prompt segmentation of the larger tis-
sue. Then we jet the points (top left and bottom right points
for BBox) on both axis with standard deviation equal to 6%,
15%, 25% of the target side length for simulating the High,
Medium, and Low prompts respectively. On Doodle prompt,
we use [13] to simulate the scribble on ground-truth with
0%, 4%, 10%, and 20% variance as Oracle, High, Medium,
and Low prompts. On the SegLab prompt, we use nnUnet
[10] with early-stop training to predict the segmentation
about 85%, 70%, and 55% dice score as High, Medium,
and Low prompts. Finally, we compare these setting with
Human, which indicates the human prompts or the annota-
tions. The Oracle and Human are set as the same on SegLab
prompt.

To simulate multiple Click or Doodle prompts on a single
image, we employ an iterative sampling strategy. Starting
with an initial prompt generated through the mentioned pro-
cedure, we incorporate one or more new prompts on the im-
age using an iterative sampling process. This strategy mim-
ics real user interaction by placing each new click/scribble
in the error-prone region of a prediction generated by the
network using the set of previous prompts. We follow [17]
for simulating the iterative sampling process.

3.2. Prompts Annotation Details

In the training set annotation process, a team of clinicians
was given access to four user-friendly prompts for anno-
tating the target in medical image segmentation. These
prompts, designed to cover a wide range of cases, proved
convenient for clinicians without technical backgrounds.
Among them, Click, BBox, and Doodle are designed for hu-
man interaction, and we strongly recommend clinicians to
use them if available. SegLab annotations are derived di-
rectly from the ground truth, but annotators are instructed
not to choose it unless they’ve attempted prompting the im-
age multiple times and are convinced that the target is not
promptable.

Analyzing the use conditions of these prompts reaffirms
their effectiveness in medical segmentation interaction. Our
statistical results indicate that clinicians take an average of
0.8 seconds for a single-click prompt, 1.2 seconds for a
BBox prompt, and 1.8 seconds for a Doodle prompt. This
quick interaction demonstrates that clinicians can easily en-
gage with the model using the provided prompts. Impor-
tantly, we did not provide any prior training to clinicians
on how to interact with the model. They learned on their
own through our user inference design. This further em-



phasizes that the given prompts can be easily and naturally
understood by humans in the context of human-computer
interaction.

In the test set annotation, regular individuals and junior
clinicians were involved to simulate real-world user scenar-
ios. This simulation offers a reliable evaluation for cases
such as education for junior clinicians or rough annotations
by regular individuals. In this scenario, users take an av-
erage of 1.4 seconds for a single-click prompt, 2.9 seconds
for a BBox prompt, and 3.8 seconds for a Doodle prompt.
While users in this case take a bit more time compared to
senior clinicians, the duration remains reasonable, consid-
ering our model adapts to an entirely unseen task with just
one prompt.

4. Implementation

We train and test the algorithm on Pytorch platform. The
training process is distributed across 64 NVIDIA A100
GPUs. Our optimization is carried out using the AdamW
optimizer (β1 = 0.9 , β2 = 0.999) with a linear learn-
ing rate warmup and a cosine decay for learning rate ad-
justments. The batch size is set at 128 images. To ensure
a diverse range of tasks and prompts during training, we
adopt a strategy that avoids equal sampling across all tasks.
Given that certain image modalities, tasks, or prompt types
are more prevalent than others, our goal is to prevent over-
fitting to these dominant elements. To achieve this, we uni-
formly select tasks and sequential states from all possible
choices. For instance, we start by randomly selecting a task
from the available options. Subsequently, we narrow down
the selection pool to include only data associated with that
chosen task. Following this, we randomly pick an image
modality from all the modalities available for the selected
task. We continue this process until we get a homogeneous
filtered pool, and then we can randomly select an individual
sample from it.

5. Analysis

5.1. Distribution differences between pre-training
and testing data

We’ve further assessed the distribution differences between
our pre-training and test sets. We employed the Fréchet
Inception Distance (FID) to compare pre-training and test
sets similarities in Table 1. FID measures the difference in
Fréchet Distance between feature vectors extracted from the
Inception-v3 model. Recognizing its potential limitations
with medical images, we also computed a ’Mededical-FID’
using our pre-trained VAE model. We calculated FID scores
between the pre-training and test sets, as well as between
two random halves of the pre-training set, as detailed in the
table below: The significant variance in average FID scores

Table 1. FID between pre-training and test sets

Train v.s. Test Half Train v.s. Half Train
FID 18.46 3.01

Medical-FID 33.87 7.62

between training/test and half-train/half-train sets suggests
major differences between training and test distributions.

5.2. Failure cases and limitations.

Our method may produce errors in two specific cases.
Firstly, if the segmentation target is indistinguishable due to
unique conditions, as shown in Failure Case 1, where hem-
orrhage obscures the optic cup. Secondly, there’s a risk of
false positives, such as in Failure Case 2, where the model
mistakenly identifies the esophagus as the pancreas when
the pancreas isn’t present in the image. We have included
detailed discussions and examples of failures in our revi-
sion.
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