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1. Depth-guided Feature Volume Construction
The depth-guided feature volume construction is detailed in
Fig. 1. We use an efficient MVS network [1] to obtain the
depth estimations of key frames. And the 2D feature repre-
sentations of key frames are extracted using a 2D convolu-
tion neural network [2], and then are back projected to vox-
els within a predefined distance from the corresponding es-
timated depth surface along the ray. The view-independent
feature volume is obtained by directly averaging the fea-
tures from different views. We gradually build the feature
volume in a coarse-to-fine pyramid paradigm with the hier-
archy 2D image feature. At each pyramid level, we perform
occupancy classification for each voxel, and only occupied
voxels are further upsampled and passed to the next pyra-
mid level. At the final fine level, we obtain a sparse feature
volume consisting of a set of occupied voxels, which are
used to perform 3D panoptic reconstruction.

2. Loss Function
Occupancy Classification. The occupancy loss LO is de-
fined as the binary cross-entropy (BCE) between the pre-
dicted occupancy score and the ground-truth occupancy
value. The supervision is applied to all the coarse-to-fine
levels.

TSDF Regression. The TSDF loss LT between the TSDF
prediction T̂k and the groundtruth TSDF Tk is formulated
as: LT = |ℓ(T̂k)−ℓ(Tk)|, where ℓ(x) = sgn(x) log(|x|+1)
is the log scale function and sgn(·) is the sign function. The
supervision is applied to all the coarse-to-fine levels.

Semantic Classification. The semantic loss LS is defined
as the cross-entropy (CE) between the predicted semantic
score and the ground-truth semantic category. The supervi-
sion is applied to all the coarse-to-fine levels.

Offset Regression. The offset loss LD is defined as
L1 loss between the predicted 3D displacement and the
groundtruth 3D displacement. The supervision is applied
to the final fine level.

Differentiable Matching. Denote the ground-truth
matching labels M = {(i, j)} ⊂ A × B between the local
instance detections Oi from the current fragment Fi and
the global instance reconstruction Og

i−1 from all previous
fragments. But there are some instances in Oi may not
find their correspondences in Og

i−1 and vice versa. We
denote the unmatched labels for Oi and Og

i−1 as I ⊆ A
and J ⊆ B, respectively. Given these labels, we minimize
the negative log-likelihood of the optimal matching matrix
M∗ as follows inspired by [3, 4].

LM =−
∑

(i,j)ϵM

logM∗
i,j −

∑
iϵI

logM∗
i,N+1

−
∑
jϵJ

logM∗
M+1,j

(1)

where M and N are the number of instances in Oi and
Og

i−1, respectively.

Joint Loss. PanoRecon is optimized by a joint loss con-
sisting of several loss terms:

L = α1LO + α2LT + α3LS + α4LD + α5LM (2)

3. Evaluation Metrics

3.1. Metrics of 3D Geometry Reconstruction

The definitions of metrics used to evaluate 3D Geometry
Reconstruction are detailed in Tab. 1
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Figure 1. 2D illustration of depth-guided feature volume construction.

Metrics Definition

Comp meanp∗∈P∗ (minp∈P ||p− p∗||)

Acc meanp∈P (minp∗∈P∗ ||p− p∗||)

Recall meanp∗∈P∗ (minp∈P ||p− p∗|| < .05)

Prec meanp∈P (minp∗∈P∗ ||p− p∗|| < .05)

F-score 2×Recall×Prec
Recall+Prec

Table 1. Metrics of 3D Geometry Reconstruction. P and P ∗

are the predicted and ground truth point clouds.

3.2. Metrics of 3D Semantic Segmentation

Following [6], we transfer the semantic labels from the
predicted mesh into the ground truth mesh using nearest
neighbor lookup on the vertices. And use the standard
mIoU(Mean Intersection over Union) to evaluate the qual-

ity of 3D Semantic Segmentation. The definition of mIoU
is formulated as:

mIoU =
1

k

k∑
i=1

pii∑k
j=1 pij +

∑k
j=1 pji − pii

=
1

k

k∑
i=1

TP

FN + FP + TP

(3)

where k represents the total number of categories, i rep-
resents groundtruth value, j represents predicted value, and
pij means predicting i as j.

3.3. Metrics of 3D Instance Segmentation

We transfer the instance labels from the predicted mesh into
the ground truth mesh using nearest neighbor lookup on the
vertices, and use standard mAP@50 and mAP@25 to evalu-
ate the prediction of instance label. The definitions of mAP
and related metrics as follows.
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NeuRec [5] 60.5 68.0 61.8 60.7 58.7 69.9 43.5 65.0 50.9 64.7 58.4 60.5 63.9 71.1 63.4 64.3 67.3 36.9 60.5
Ours 71.8 70.7 62.6 67.6 65.9 74.3 51.0 72.0 60.2 70.3 61.0 65.7 71.4 74.7 67.8 69.2 77.7 45.7 66.6

Table 2. Quantitative Result of Instance-level 3D Reconstruction on ScanNetV2 val set. We compare our method with a representative
online feature fusion method [5], and report average F-score [%] metric for each semantic foreground category(things category).

IoU (Intersection over Union). To decide whether a pre-
diction is correct w.r.t to an object or not, IoU is used. It
is defines as the intersection between the predicted instance
mask and actual instance mask divided by their union.

IoU =
Area of Overlap

Area of Union
(4)

A prediction is considered to be True Positive if IoU ≥
threshold, and False Positive if IoU < threshold.

Precision and Recall. Before introducing mAP, we
present the definitions of precision and recall first. Recall
is the True Positive Rate i.e. Of all the actual positives, how
many are True positives predictions. Precision is the Posi-
tive prediction value i.e. Of all the positive predictions, how
many are True positives predictions.

Recall =
TP

TP + FN
(5)

Precision =
TP

TP + FP
(6)

mAP (mean Average Precision). In order to calculate
mAP, first, we need to calculate AP per class. For each
categoty, there are K prediction-groundtruth mask pairs
{Mpred

i ,Mgt
i }Ki=1, if IoU(Mpred

i ,Mgt
i ) > threshold, as

well as K confidence scores {conf}Ki=1, correspondingly.
In order of confidence score, we will obtain a curve where
precision changes as recall increases, called PR-curve. The
area under the PR-curve refers to the AP(Average Precision)
of this categoty. The mAP is calculated by finding Average
Precision(AP) for each class and then average over all N
classes.

mAP =
1

N

N∑
j=1

APj (7)

mAP@50 indicates that threshold is set to be 0.5, and
mAP@25 indicates that threshold is set to be 0.25.

4. Evaluation on Instance-level 3D Reconstruc-
tion

As shown in Fig. 2, our method is able to accurately recon-
struct while successfully splitting the 3D scene into multi-
ple instance objects. For the evaluation of instance-level 3D
Reconstruction, we obtain instance-level mesh by using the
groundtruth instance-level bounding box to crop scene-level
mesh. As shown in Tab. 2, we compare our method with a
representative online feature fusion method [5] in terms of
F-score metric. It is obviously that our method greatly out-
perform NeuralRecon [5] in the instance-level 3D recon-
struction. With the assistance of MVS depth, our method
can recover more complete and detailed geometry of fore-
ground objects than the pure feature fusion method [5].

5. Ablation of tracking and fusion
We evaluate an offline instance segmentation paradigm that
initially reconstructs the voxel map with semantic and ge-
ometric primitives of the entire scene and then performs
voxel clustering to obtain the offline instance segmentation.
The comparison in Tab. 3 reveals that the offline paradigm
performs worse than online paradigm. As depicted in Fig. 3,
the shifted coordinates of large object tend to be distributed
across multiple clusters due to the limited receptive field
of each fragment, leading to their segmentation into multi-
ple instances. In contrast, the proposed tracking and fusion
module in online paradigm can effectively match and fuse
the same instance across different fragments.

Method AP50↑ AP25↑

Ours with offline paradigm 0.223 0.471
Ours with online paradigm 0.264 0.497

Table 3. Ablation of different paradigms on ScanNetV2 val set.

6. Supplementary Video
In the supplementary video, we demonstrate the incremen-
tal panoptic 3D reconstruction process of PanoRecon in
real-time applications.
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Figure 2. Qualitative Result of 3D Instance Segmentation on ScanNetV2 val set. We are able to accurately reconstruct while segmenting
the 3D scene in instance-level despite without a depth sensor.
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Figure 3. Qualitative comparison of two different paradigms.
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