
Appendix

For a thorough understanding of our Point Transformer V3
(PTv3), we have compiled a detailed Appendix. The table
of contents below offers a quick overview and will guide to
specific sections of interest.
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A. Limitations and Broader Impacts

Attention mechanisum. In prioritizing efficiency, PTv3
reverts to utilizing dot-product attention, which has been
well-optimized through engineering efforts. However, we
do note a reduction in convergence speed and a limitation
in further scaling depth compared to vector attention. This
issue also observed in recent advancements in transformer
technology [93], is attributed to “attention sinks” stem-
ming from the dot-product and softmax operations. Con-
sequently, our findings reinforce the need for continued ex-
ploration of attention mechanisms.
Scaling parameters. PTv3 transcends the existing trade-
offs between accuracy and efficiency, paving the way for
investigating 3D transformers at larger parameter scales
within given computational resources. While this explo-
ration remains a topic for future work, current point cloud
transformers already demonstrate an over-capacity for ex-
isting tasks. We advocate for a combined approach that
scales up both the model parameters and the scope of data
and tasks (e.g., learning from all available data, multi-task
frameworks, and multi-modality tasks). Such an integrated
strategy could fully unlock the potential of scaling in 3D
representation learning.
Multiple modalities. Point cloud serialization provides a
robust methodology for transforming n-dimensional data
into a structured 1D format, effectively preserving spatial
proximity. This technique can similarly be applied to im-
age data, enabling its conversion into a language-style 1D
structure that PTv3 can efficiently encode. This capabil-
ity opens new avenues for the development of multimodal

Scratch Joint Training [92]

Config Value Config Value

optimizer AdamW optimizer AdamW
scheduler Cosine scheduler Cosine
criteria CrossEntropy (1) criteria CrossEntropy (1)

Lovasz [4] (1) Lovasz [4] (1)
learning rate 5e-3 learning rate 5e-3
block lr scaler 0.1 block lr scaler 0.1
weight decay 5e-2 weight decay 5e-2
batch size 12 batch size 24
datasets ScanNet / datasets ScanNet (2)

S3DIS / S3DIS (1)
Struct.3D Struct.3D (4)

warmup epochs 40 warmup iters 6k
epochs 800 iters 120k

Table 12. Indoor semantic segmentation settings.

Scratch Joint Training [92]

Config Value Config Value

optimizer AdamW optimizer AdamW
scheduler Cosine scheduler Cosine
criteria CrossEntropy (1) criteria CrossEntropy (1)

Lovasz [4] (1) Lovasz [4] (1)
learning rate 2e-3 learning rate 2e-3
block lr scaler 1e-1 block lr scaler 1e-1
weight decay 5e-3 weight decay 5e-3
batch size 12 batch size 24
datasets NuScenes / datasets NuScenes (1)

Sem.KITTI / Sem.KITTI (1)
Waymo Waymo (1)

warmup epochs 2 warmup iters 9k
epochs 50 iters 180k

Table 13. Outdoor semantic segmentation settings.

Ins. Seg. Obj. Det

Config Value Config Value

framework PointGroup [35] framework CenterPoint [102]
optimizer AdamW optimizer Adam
scheduler Cosine scheduler Cosine
learning rate 5e-3 learning rate 3e-3
block lr scaler 1e-1 block lr scaler 1e-1
weight decay 5e-2 weight decay 1e-2
batch size 12 batch size 16
datasets ScanNet datasets Waymo
warmup epochs 40 warmup epochs 0
epochs 800 epochs 24

Table 14. Other downstream tasks settings.

models that bridge 2D and 3D spaces, fostering opportuni-
ties for large-scale, synergistic pre-training that integrates
both image and point cloud data.

B. Implementation Details

Our implementation primarily utilizes Pointcept [15], a spe-
cialized codebase focusing on point cloud perception and



Config Value

serialization pattern Z + TZ + H + TH
patch interaction Shift Order + Shuffle Order
positional encoding xCPE
embedding depth 2
embedding channels 32
encoder depth [2, 2, 6, 2]
encoder channels [64, 128, 256, 512]
encoder num heads [4, 8, 16, 32]
encoder patch size [1024, 1024, 1024, 1024]
decoder depth [1, 1, 1, 1]
decoder channels [64, 64, 128, 256]
decoder num heads [4, 4, 8, 16]
decoder patch size [1024, 1024, 1024, 1024]
down stride [×2, ×2, ×2, ×2]
mlp ratio 4
qkv bias True
drop path 0.3

Table 15. Model settings.

Augmentations Parameters Indoor Outdoor

random dropout dropout ratio: 0.2, p: 0.2 ✓ -
random rotate axis: z, angle: [-1, 1], p: 0.5 ✓ ✓

axis: x, angle: [-1 / 64, 1 / 64], p: 0.5 ✓ -
axis: y, angle: [-1 / 64, 1 / 64], p: 0.5 ✓ -

random scale scale: [0.9, 1.1] ✓ ✓
random flip p: 0.5 ✓ ✓
random jitter sigma: 0.005, clip: 0.02 ✓ ✓
elastic distort params: [[0.2, 0.4], [0.8, 1.6]] ✓ -
auto contrast p: 0.2 ✓ -
color jitter std: 0.05; p: 0.95 ✓ -
grid sampling grid size: 0.02 (indoor), 0.05 (outdoor) ✓ ✓
sphere crop ratio: 0.8, max points: 128000 ✓ -
normalize color p: 1 ✓ -

Table 16. Data augmentations.

representation learning. For tasks involving outdoor object
detection, we employ OpenPCDet [76], which is tailored
for LiDAR-based 3D object detection. The specifics of our
implementation are detailed in this section.

B.1. Training Settings

Indoor semantic segmentation. The settings for indoor
semantic segmentation are outlined in Tab. 12. The two
leftmost columns describe the parameters for training from
scratch using a single dataset. To our knowledge, this rep-
resents the first initiative to standardize training settings
across different indoor benchmarks with a unified approach.
The two rightmost columns describe the parameters for
multi-dataset joint training [92] with PTv3, maintaining
similar settings to the scratch training but with an increased
batch size. The numbers in brackets indicate the relative
weight assigned to each dataset (criteria) in the mix.
Outdoor semantic segmentation. The configuration for
outdoor semantic segmentation, presented in Tab. 13, fol-
lows a similar format to that of indoor. We also standardize
the training settings across three outdoor datasets. Notably,

Block BN LN BN LN
Pooling BN LN LN BN

Perf. 76.7 76.1 75.6 77.3

Table 17. Nomalization layer.

Block Traditional Post-Norm Pre-Norm

Perf. 76.6 72.3 77.3

Table 18. Block structure.

PTv3 operates effectively without the need for point clip-
ping within a specific range, a step that is typically essential
in current models. Furthermore, we extend our methodol-
ogy to multi-dataset joint training with PTv3, employing
settings analogous to scratch training but with augmented
batch size. The numbers in brackets represent the propor-
tional weight assigned to each dataset in the training mix.
Other Downstream Tasks. We outline our configurations
for indoor instance segmentation and outdoor object detec-
tion in Tab. 14. For indoor instance segmentation, we use
PointGroup [35] as our foundational framework, a popular
choice in 3D representation learning [30, 91, 92, 94]. Our
configuration primarily follows PointContrast [94], with
necessary adjustments made for PTv3 compatibility. Re-
garding outdoor object detection, we adhere to the settings
detailed in FlatFormer [51] and implement CenterPoint as
our base framework to assess PTv3’s effectiveness. It’s im-
portant to note that PTv3 is versatile and can be integrated
with various other frameworks due to its backbone nature.

B.2. Model Settings

As briefly described in Sec. 4.3, here we delve into the
detailed model configurations of our PTv3, which are
comprehensively listed in Tab. 15. This table serves
as a blueprint for components within serialization-based
point cloud transformers, encapsulating models like Oct-
Former [83] and FlatFormer [51] within the outlined frame-
works, except for certain limitations discussed in Sec. 2.
Specifically, OctFormer can be interpreted as utilizing a sin-
gle z-order serialization with patch interaction enabled by
Shift Dilation. Conversely, FlatFormer can be character-
ized by its window-based serialization approach, facilitat-
ing patch interaction through Shift Order.

B.3. Data Augmentations

The specific configurations of data augmentations imple-
mented for PTv3 are detailed in Tab. 16. We unify augmen-
tation pipelines for both indoor and outdoor scenarios sepa-
rately, and the configurations are shared by all tasks within
each domain. Notably, we observed that PTv3 does not de-
pend on point clipping within a specific range, a process
often crucial for existing models.



Methods Year Val Test

◦PointNet++ [63] 2017 53.5 55.7
◦ 3DMV [16] 2018 - 48.4
◦PointCNN [46] 2018 - 45.8
◦SparseConvNet [25] 2018 69.3 72.5
◦PanopticFusion [55] 2019 - 52.9
◦PointConv [88] 2019 61.0 66.6
◦ JointPointBased [11] 2019 69.2 63.4
◦KPConv [77] 2019 69.2 68.6
◦PointASNL [97] 2020 63.5 66.6
◦SegGCN [44] 2020 - 58.9
◦RandLA-Net [32] 2020 - 64.5
◦ JSENet [33] 2020 - 69.9
◦FusionNet [104] 2020 - 68.8
◦FastPointTransformer [58] 2022 72.4 -
◦SratifiedTranformer [40] 2022 74.3 73.7
◦PointNeXt [64] 2022 71.5 71.2
◦LargeKernel3D [9] 2023 73.5 73.9
◦PointMetaBase [47] 2023 72.8 71.4
◦PointConvFormer [89] 2023 74.5 74.9
◦OctFormer [83] 2023 75.7 76.6
◦Swin3D [101] 2023 77.5 77.9
• + Supervised [101] 2023 76.7 77.9
◦MinkUNet [13] 2019 72.2 73.6
• + PC [94] 2020 74.1 -
• + CSC [30] 2021 73.8 -
• + MSC [91] 2023 75.5 -
• + GC [81] 2024 75.7 -
• + PPT [92] 2024 76.4 76.6
◦OA-CNNs [60] 2024 76.1 75.6
◦PTv1 [106] 2021 70.6 -
◦PTv2 [90] 2022 75.4 74.2
◦PTv3 (Ours) 2024 77.5 77.9
• + PPT [92] 2024 78.6 79.4

Table 19. ScanNet V2 semantic segmentation.

C. Additional Ablations
In this section, we present further ablation studies focusing
on macro designs of PTv3, previously discussed in Sec. 4.3.

C.1. Nomalization Layer

Previous point transformers employ Batch Normalization
(BN), which can lead to performance variability depend-
ing on the batch size. This variability becomes particularly
problematic in scenarios with memory constraints that re-
quire small batch sizes or in tasks demanding dynamic or
varying batch sizes. To address this issue, we have grad-
ually transitioned to Layer Normalization (LN). Our final,
empirically determined choice is to implement Layer Nor-
malization in the attention blocks while retaining Batch
Normalization in the pooling layers (see Tab. 17).

C.2. Block Structure

Previous point transformers use a traditional block structure
that sequentially applies an operator, a normalization layer,
and an activation function. While effective, this approach
can sometimes complicate training deeper models due to is-

Methods Year Area5 6-fold

◦PointNet [62] 2017 41.1 47.6
◦SegCloud [75] 2017 48.9 -
◦TanConv [74] 2018 52.6 -
◦PointCNN [46] 2018 57.3 65.4
◦ParamConv [85] 2018 58.3 -
◦PointWeb [105] 2019 60.3 66.7
◦HPEIN [34] 2019 61.9 -
◦KPConv [77] 2019 67.1 70.6
◦GACNet [82] 2019 62.9 -
◦PAT [100] 2019 60.1 -
◦SPGraph [42] 2018 58.0 62.1
◦SegGCN [44] 2020 63.6 -
◦PAConv [96] 2021 66.6 -
◦StratifiedTransformer [40] 2022 72.0 -
◦PointNeXt [64] 2022 70.5 74.9
◦SuperpointTransformer [65] 2023 68.9 76.0
◦PointMetaBase [47] 2023 72.0 77.0
◦Swin3D [101] 2023 72.5 76.9
• + Supervised [101] 2023 74.5 79.8
◦MinkUNet [13] 2019 65.4 65.4
• + PC [94] 2020 70.3 -
• + CSC [30] 2021 72.2 -
• + MSC [91] 2023 70.1 -
• + GC [81] 2024 72.0 -
• + PPT [92] 2024 72.7 78.1
◦PTv1 [106] 2021 70.4 65.4
◦PTv2 [90] 2022 71.6 73.5
◦PTv3 (Ours) 2024 73.4 77.7
• + PPT [92] 2024 74.7 80.8

Table 20. S3DIS semantic segmentation.

sues like vanishing gradients or the need for careful initial-
ization and learning rate adjustments [95]. Consequently,
we explored adopting a more modern block structure, such
as pre-norm and post-norm. The pre-norm structure, where
a normalization layer precedes the operator, can stabilize
training by ensuring normalized inputs for each layer [12].
In contrast, the post-norm structure places a normalization
layer right after the operator, potentially leading to faster
convergence but with less stability [80]. Our experimental
results (see Tab. 18) indicate that the pre-norm structure is
more suitable for our PTv3, aligning with findings in recent
transformer-based models [95].

D. Additional Comparision

In this section, we expand upon the combined results ta-
ble for semantic segmentation (Tab. 5 and Tab. 7) from
our main paper, offering a more detailed breakdown of re-
sults alongside the respective publication years of previous
works. This comprehensive result table is designed to assist
readers in tracking the progression of research efforts in 3D
representation learning. Marker ◦ refers to the result from a
model trained from scratch, and • refers to the result from a
pre-trained model.



Methods Year Val Test

◦SPVNAS [73] 2020 64.7 66.4
◦Cylinder3D [108] 2021 64.3 67.8
◦PVKD [31] 2022 - 71.2
◦ 2DPASS [98] 2022 69.3 72.9
◦WaffleIron [61] 2023 68.0 70.8
◦SphereFormer [41] 2023 67.8 74.8
◦RangeFormer [39] 2023 67.6 73.3
◦MinkUNet [13] 2019 63.8 -
• + PPT [92] 2024 71.4 -
◦OA-CNNs [60] 2024 70.6 -
◦PTv2 [90] 2022 70.3 72.6
◦PTv3 (Ours) 2024 70.8 74.2
• + M3Net [48] 2024 72.0 75.1
• + PPT [92] 2024 72.3 75.5

Table 21. SemanticKITTI semantic segmentation.

Methods Year Val Test

◦SPVNAS [73] 2020 77.4 -
◦Cylinder3D [108] 2021 76.1 77.2
◦PVKD [31] 2022 - 76.0
◦ 2DPASS [98] 2022 - 80.8
◦SphereFormer [41] 2023 78.4 81.9
◦RangeFormer [39] 2023 78.1 80.1
◦MinkUNet [13] 2019 73.3 -
• + PPT [92] 2024 78.6 -
◦OA-CNNs [60] 2024 78.9 -
◦PTv2 [90] 2022 80.2 82.6
◦PTv3 (Ours) 2024 80.4 82.7
• + M3Net [48] 2024 80.9 83.1
• + PPT [92] 2024 81.2 83.0

Table 22. NuScenes semantic segmentation.

D.1. Indoor Semantic Segmentation

We conduct a detailed comparison of pre-training technolo-
gies and backbones on the ScanNet v2 [17] (see Tab. 19)
and S3DIS [2] (see Tab. 20) datasets. ScanNet v2 com-
prises 1,513 room scans reconstructed from RGB-D frames,
divided into 1,201 training scenes and 312 for validation. In
this dataset, model input point clouds are sampled from the
vertices of reconstructed meshes, with each point assigned
a semantic label from 20 categories (e.g., wall, floor, table).
The S3DIS dataset for semantic scene parsing includes 271
rooms across six areas from three buildings. Following a
common practice [63, 75, 106], we withhold area 5 for test-
ing and perform a 6-fold cross-validation. Different from
ScanNet v2, S3DIS densely sampled points on mesh sur-
faces, annotated into 13 categories. Consistent with stan-
dard practice [63]. We employ the mean class-wise inter-
section over union (mIoU) as the primary evaluation metric
for indoor semantic segmentation.

D.2. Outdoor Semantic Segmentation

We extend our comprehensive evaluation of pre-training
technologies and backbones to outdoor semantic segmenta-
tion tasks, focusing on the SemanticKITTI [3](see Tab. 21)

and NuScenes [5] (see Tab. 22) datasets. SemanticKITTI is
derived from the KITTI Vision Benchmark Suite and con-
sists of 22 sequences, with 19 for training and the remain-
ing 3 for testing. It features richly annotated LiDAR scans,
offering a diverse array of driving scenarios. Each point
in this dataset is labeled with one of 28 semantic classes,
encompassing various elements of urban driving environ-
ments. NuScenes, on the other hand, provides a large-
scale dataset for autonomous driving, comprising 1,000 di-
verse urban driving scenes from Boston and Singapore. For
outdoor semantic segmentation, we also employ the mean
class-wise intersection over union (mIoU) as the primary
evaluation metric for outdoor semantic segmentation.


