
ReconFusion: 3D Reconstruction with Diffusion Priors

Rundi Wu1,2* Ben Mildenhall1* Philipp Henzler1 Keunhong Park1 Ruiqi Gao3 Daniel Watson3

Pratul P. Srinivasan1 Dor Verbin1 Jonathan T. Barron1 Ben Poole3 Aleksander Hołyński1*

1Google Research 2Columbia University 3Google DeepMind
* denotes equal contribution

A. Diffusion Model Details

Our diffusion model is adapted from a pre-trained text-to-
image latent diffusion model that maps 512 × 512 × 3 in-
puts into a latent dimension of 64 × 64 × 8. We modify
this initial model to accept the necessary conditioning sig-
nals for text-free novel-view synthesis. We replace the in-
puts to the cross-attention pathway (which typically consist
of a sequence of CLIP text embeddings) with the outputs
of an additional dense layer. The input to this dense layer
is a concatenated tensor consisting of (1) the unconditional
CLIP text embedding (i.e. the empty string ""), and (2) the
CLIP image embeddings of each of the input conditioning
frames. We initialize the weights of this dense layer such
that it produces the unconditional CLIP text embedding at
the start of fine-tuning. This mechanism is inspired by the
fine-tuning process in Zero-1-to-3 [3]. Zero-1-to-3 fine-
tunes from an image variations base model that has been
previously fine-tuned to enable conditioning on CLIP image
embeddings. We fine-tune directly from a text-conditioned
model, but our architecture can learn image variation-like
behavior through the dense layer. Furthermore, unlike Zero-
1-to-3, our dense layer does not take pose as input, since the
3D transformation between the input conditioning frames
and the target frame is applied through the PixelNeRF ren-
dering process. In addition to the cross-attention modifica-
tions, we concatenate the outputs of the PixelNeRF model
(a 64 × 64 × 131 tensor consisting of RGB and features)
to the input noise that is passed to the U-Net. As in prior
work [2], we initialize the additional convolutional weights
to zero such that the added inputs have no effect at the start
of fine-tuning.

To enable classifier-free guidance on our added condi-
tioning signals, we drop out all conditioning images for a
training example with 10% probability. We drop out the
CLIP and PixelNeRF conditioning pathways independently
in order to enable separate guidance, although we found em-
pirically that using the same guidance weight across both
conditioning signals (i.e. performing joint CFG across both
conditioning signals) produces optimal results. We train
our model for 250,000 iterations with a learning rate of

10−4 and a batch size of 128. Our training examples con-
sist of 3 input conditioning images, 1 target image, and
the corresponding relative poses between each input image
and the target image. This data is sampled from CO3D,
RealEstate10k, MVImgNet, and Objaverse with uniform
probability. For Objaverse, we light the object with ran-
dom environment maps and compose it onto a random solid
background at each training iteration.

B. PixelNeRF Details
Our PixelNeRF module is inspired by but not identical to
the architecture proposed in the original work [9]. The in-
puts are N images along with their camera poses (extrin-
sic and intrinsic matrices), along with a target camera pose.
The output is an approximate rendering at the target cam-
era pose (both RGB and feature channels), which is con-
catenated with the input to the diffusion U-Net to provide a
strong conditioning signal that encodes the pose and image
content of the target novel view. During inference, we typi-
cally resize (but do not crop) the inputs to PixelNeRF such
that their shorter dimension is 512 pixels, since the model
was trained on 512× 512 resolution inputs. The output tar-
get image is always 64 × 64 × 131 (3 RGB channels plus
128 feature channels), to match the latent resolution of the
diffusion model.

The PixelNeRF module begins by passing all input im-
ages through a 2D U-Net to create feature images of equal
spatial resolution with 128 channels. We then cast rays
through each pixel of the target image, and sample 128
points along each ray from depth 0.5 to ∞ (uniform up
to distance 1, then linear in disparity). We reproject these
points into each of the input cameras and gather correspond-
ing features from the feature images to make a gathered ten-
sor of size 64 × 64 × N × 128. We append positionally-
encoded 3D locations, as well as the mean and variance
of these features over the N -long dimension correspond-
ing to the number of inputs. A small MLP then processes
this full tensor along the channel dimension to output a new
set of features and weights. These weights are then used
to compute a weighted sum along the N -long dimension,
thereby producing a new tensor of size 64 × 64 × 128.

1

(a) 3 input views (b) 6 input views (c) 9 input views (d) Ground truth

Figure 1. More training views leads to better samples. Here we show samples from the diffusion model at a novel viewpoint while
varying the number of training images. In all cases, the diffusion model is given the three nearest images to the novel viewpoint. We
see that as we increase the number of known scene observations, the expected distance to the nearest training view decreases, therefore
increasing the fidelity of diffusion model samples.

(a) PixelNeRF RGB output (b) Diffusion model sample (c) PixelNeRF RGB output (d) Diffusion model sample

Figure 2. PixelNeRF Visualization. Here we show (a,c) a visualization of the 64 × 64 RGB component of the PixelNeRF output, and
(b,d) the corresponding sample from the diffusion model, which is conditioned on the PixelNeRF outputs.

A second MLP then processes this summed tensor along
the channel dimension to produce the final output of size
64× 64× (3 + 128).

All learned components (including the 2D U-Net used
to extract image features) are initialized randomly and op-
timized jointly with the fine-tuned diffusion model U-Net.
As mentioned in the main text, we apply an RGB recon-
struction loss to encourage the PixelNeRF module to learn
a useful conditioning signal. See Figure 2 for a visualization
of our PixelNeRF model.

C. Dataset Details
For LLFF and DTU, we use the standard train/test splits
proposed by earlier works. For RealEstate10k and CO3D,
we select the training views evenly from all the frames and
use every 8th of the remaining frames for evaluation. For
the mip-NeRF 360 dataset we design a heuristic to choose
a train split of views that are uniformly distributed around
the hemisphere and pointed toward the central object of in-
terest: We randomly sample 106 different 9-view splits and
use the one that minimizes these heuristic losses, then fur-
ther choose the 6- and 3-view splits to be subsets of the
9-view split.

We carefully rescale each dataset to be compatible with
the near plane of 0.5 expected by the PixelNeRF module.
DTU, CO3D, mip-NeRF 360 are rescaled by setting the
“focus point” of the data to the origin and rescaling cam-
era positions to fit inside a [−1, 1]3 cube. RealEstate10k
is pre-scaled by its creators to have a reasonable near dis-
tance of 1.0, so we simply multiply its camera positions by
0.5. LLFF similarly provides a near bound based on the
COLMAP point cloud, which we use to rescale the data to
allow a 0.5 near plane.

D. Baselines Details
Our Zip-NeRF [1] baseline has slight hyperparameter mod-
ifications from the original that better suit few-view recon-
struction. This was done primarily to provide a maximally
competitive baseline for our model, but these same hyper-
parameters are used by our model as well, and we observe
a modest performance improvement due to them. In partic-
ular, we use:
• Distortion loss with weight 0.01,
• Normalized weight decay on the NGP grid parameters

with strength 0.1,
• A smaller view-dependence network with width 32 and

depth 1, to avoid overfitting,
• No hexagonal spiral control points, to accelerate render-

ing at the cost of introducing some aliasing,
• A downweighted density in the “contracted” region of

space outside of the unit sphere, wherein we multiply
the density emitted by Zip-NeRF by |det(JC(x))| (the

isotropic scaling induced by the contraction function, see
the supplement of Barron et al. [1]).

We find that this baseline performs competitively on
forward-facing scenes such as LLFF and RealEstate10k,
especially with 9 input views, but often produces many
floaters or fails to reconstruct any meaningful geometry on
the more difficult datasets. Further tuning and the addi-
tion of other heuristic regularizers (e.g., the techniques used
in RegNeRF or FreeNeRF) would likely improve results.
However, the point of this model is to show baseline re-
construction performance with our diffusion model regular-
izer disabled, rather than to be a state-of-the-art few-view
method. To re-emphasize this: the only difference between
results labeled “Ours” and “Zip-NeRF” is that the diffusion
regularizer weight is set to 0, all other hyperparameters are
identical.

For RegNeRF [4] and FreeNeRF [8], we use the re-
sult images shared by the authors for the LLFF and DTU
datasets, and run the authors’ code for FreeNeRF on the
other three datasets. For DiffusioNeRF [7], we use the au-
thors’ result images on the DTU dataset, and run their code
on the other four datasets. Because SimpleNeRF [6] used
different train/test splits for LLFF and DTU, we run the au-
thors’ code on all five datasets.

SparseFusion [10] was originally trained on CO3D us-
ing masked images of foreground objects. We re-train their
models using the unmasked images in a category-specific
manner, then use their 3D distillation pipeline to obtain the
final rendered images.

ZeroNVS [5] is a concurrent work that trains a diffusion
model for novel view synthesis of scenes from a single im-
age. To evaluate its performance on multiview inputs, we
modify its reconstruction pipeline by using the input view
closest to the sampled random view for conditioning the dif-
fusion model. For DTU and mip-NeRF 360 scenes (which
they evaluate in their paper for the single input case), we
follow their viewpoint selection strategy for sampling new
views. For CO3D, we use the same strategy that is em-
ployed for the mip-NeRF 360 scenes. For RealEstate10K,
we sample new views on a spline path fitted from the input
views, then perturb them. For LLFF, we sample new views
on a circle fitted from the input views, then perturb them.

References
[1] Jonathan T. Barron, Ben Mildenhall, Dor Verbin, Pratul P

Srinivasan, and Peter Hedman. Zip-NeRF: Anti-aliased grid-
based neural radiance fields. ICCV, 2023. 3

[2] Tim Brooks, Aleksander Holynski, and Alexei A Efros. In-
structPix2Pix: Learning to Follow Image Editing Instruc-
tions. CVPR, 2023. 1

[3] Ruoshi Liu, Rundi Wu, Basile Van Hoorick, Pavel Tok-
makov, Sergey Zakharov, and Carl Vondrick. Zero-1-to-3:
Zero-Shot One Image to 3D Object. arXiv, 2023. 1

[4] Michael Niemeyer, Jonathan T. Barron, Ben Mildenhall,
Mehdi SM Sajjadi, Andreas Geiger, and Noha Radwan. Reg-
NeRF: Regularizing Neural Radiance Fields for View Syn-
thesis from Sparse Inputs. CVPR, 2022. 3

[5] Kyle Sargent, Zizhang Li, Tanmay Shah, Charles Herrmann,
Hong-Xing Yu, Yunzhi Zhang, Eric Ryan Chan, Dmitry
Lagun, Li Fei-Fei, Deqing Sun, et al. ZeroNVS: Zero-
Shot 360-Degree View Synthesis from a Single Real Image.
arXiv:2310.17994, 2023. 3

[6] Nagabhushan Somraj, Adithyan Karanayil, and Rajiv
Soundararajan. SimpleNeRF: Regularizing Sparse Input
Neural Radiance Fields with Simpler Solutions. SIGGRAPH
Asia, 2023. 3

[7] Jamie Wynn and Daniyar Turmukhambetov. DiffusioNeRF:
Regularizing neural radiance fields with denoising diffusion
models. CVPR, 2023. 3

[8] Jiawei Yang, Marco Pavone, and Yue Wang. FreeNeRF:
Improving Few-shot Neural Rendering with Free Frequency
Regularization. CVPR, 2023. 3

[9] Alex Yu, Vickie Ye, Matthew Tancik, and Angjoo Kanazawa.
pixelNeRF: Neural Radiance Fields from One or Few Im-
ages. CVPR, 2021. 1

[10] Zhizhuo Zhou and Shubham Tulsiani. SparseFusion: Dis-
tilling View-conditioned Diffusion for 3D Reconstruction.
CVPR, 2023. 3

	. Diffusion Model Details
	. PixelNeRF Details
	. Dataset Details
	. Baselines Details

