
This supplementary document offers additional compar-
isons and detailed information regarding our proposed RR-
Net model. In Sec A, we offer a further comparison between
proposed RRNet and more baseline methods. In Sec B, we
present more visualized results. We then provide additional
analysis of Veot in Sec C. The implementation and addi-
tional experimental details are included in Sec D. Finally,
we discuss the limitations of RRNet in Sec E.

A. Additional Comparisons

Method GPU Memory Usage (MiB)

TI 25458
Unet Update 30060
Unet Update + TI OOM
RRNet 25040

Table 4. Memory usage of training.

Additional baselines. To provide a more comprehensive
comparison, we compare with three other baseline methods.

• Textual Inversion. The first method is a variation of
textual inversion [8]. In this approach, we employ the
its loss function to fit the diffusion model to the given
set of images by optimizing the input embeddings.

• Unet Update. The second method involves maintain-
ing the text encoder of SD fixed while fine-tuning the
Unet component. Specifically, we implement Low-
Rank Adaptation (LoRA) [16] to prevent catastrophic
forgetting in SD. The training parameters are set with
a learning rate of 1e-4 and a rank of 4, over a duration
of 100 epochs.

• Reversion. Furthermore, we tested the Reversion
method on our dataset. The empirical results indicated
that the images generated through Reversion were of
poor quality. This suboptimal performance could be
attributed to the inherent complexities associated with
the Relation Rectification Task. Due to these findings,
we decided against including the quantitative results of
this method in our report. For reference, examples of
these generated images are depicted in Figure 8.

A potential fourth method, optimizing the text encoder
and Unet parameters simultaneously, was considered but
deemed impractical due to its excessive computational de-
mands. The memory requirements for training using differ-
ent methods are compared in Table 4. Training with a batch
size of 1 is not unfeasible on a single V100-32GB.
Quantitative analysis. The results are presented in the
Table 5. It can be observed that among the baselines, TI

demonstrates higher performance in relationship generation
accuracy metrics compared to Unet Update. Our RRNet,
employing a mere λ = 0.2, closely approaches the per-
formance of TI across various relationship generation accu-
racy metrics, while also maintaining a lower FID. Increas-
ing λ to 0.6 significantly elevates RRNet’s performance
above the baselines in all relationship generation accuracy
metrics. Specifically, in the Position (Qwen) and Action
(Qwen) metrics, RRNet (λ=0.6) outperforms TI by 13.7%
and 5.7%, respectively. Furthermore, when using LLaVA as
the detector, RRNet (λ=0.6) also exceeds TI by 9.2% and
5.8% respectively in position and action relationship gener-
ation metrics. In terms of OGA, RRNet (λ=0.6) surpasses
TI by a margin of 4.1%.

For those two baselines, since the issue with the text en-
coder treating sentences as a Bag of Words (BOW) remains
unresolved, they still struggle to accurately distinguish the
direction of relationships. They tend more to directly fit the
dataset rather than truly learning to represent the relation-
ships between objects.

Figure 8. In our dataset, the Reversion fails to achieve accurate
relationship generation.

B. Results Visualization

We provide additional qualitative results to demonstrate
the effect of RRNet on relation rectification for SD. The
generation results of action OSPs are shown in Figure 9 and
the results of positional OSPs are showcased in Figure 10.

It can be observed that with RRNet’s assistance, SD can
accurately generate relationships in both directions.

C. Additional Analysis of Veot

In the Sec 3, we identify the Veot as pivotal in generating
relationships. Specifically, as detailed in previous work [3],
the Veot plays a crucial role in foreground generation, en-
compassing both the objects and their interrelationships.

Here, we conducted an experiment by replacing the Veot

of two prompts to validate its significance.



Method Position(Qwen) ↑ Position(LLaVA)↑ Action(Qwen) ↑ Action(LLaVA)↑ OGA↑ FID↓
TI 0.560 0.592 0.443 0.574 0.929 91.634
Unet Update 0.473 0.563 0.404 0.529 0.912 87.294
RRNet (λ=0.2) 0.564 0.597 0.469 0.565 0.937 89.13
RRNet (λ=0.6) 0.697 0.684 0.500 0.632 0.970 100.78

Table 5. Further comparisons.

Observation. Our experiment, illustrated in the first row of
Figure 11, involved replacing the Veot from “A corgi”
with that from “A cat inside the box”. This re-
sulted in an image of “A corgi inside the box”.
This experiment suggests that the primary role of Veot is to
control the foreground layout, dictating where each object
appears. Since the semantic of “A corgi” closely match
that of “A cat”, it would match the anchor for “A cat”
and instead generate a corgi.
Discussion. We uncovered a fascinating aspect of Veot re-
lated to the diffusion generation mechanism. Analogous to
painting, the Veot shapes the basic layout of the foreground,
setting anchor points for each object’s generation. It es-
tablishes an anchor point for each foreground object to be
generated, without detailing each object specifically. The
word embeddings of these objects then align with the clos-
est anchor, leading to their manifestation at specific loca-
tions. The occurrences in Figure [Mask Phenomenon] can
be seen as a failure in object generation due to the lack of
precise positional information in Veot.

Therefore, in our work, we achieve the effect of correctly
controlling the generation of the foreground by adjusting
Veot.

D. Experiment Settings
D.1. Detailed dataset statistics.

The RR dataset comprises 21 relationships, consisting
of 8 positional and 13 action types. Each relationship in-
cludes 4 types of prompts, two for OSPs represented as
< A,R,B > and < B,R,A >, and two generated from
template sentence “This is a photo of {obj}” for
object disentanglement purposes. We collect 3-5 images for
each prompt to serve as exemplars for training.

D.2. Relationship Detection with Chatbots.

Prompts for relationship detection. We employ Vision-
language chatbots to facilitate the detection of relationships
in images. To ensure these chatbots focus more on the re-
lationships between objects, we have developed a series of
prompt templates. For a sentence can be abstracted as triplet
< A,R,B >, prompt templates are listed follows:

1. “Is there any object A in the
image?”

2. “Is there any object B in the
image?”

3. “Are both object A and object B
present in the image?”

4. “Can you infer the relationship that
exists between object A and object B
in the image?”

5. “Is there ARB or BRA or neither?”

“object A” and “object B” are placeholders sub-
stituted by entities in the OSPs. “ARB” and “BRA” are
OSPs. During the evaluation, each generated image under-
goes assessment through above five questions.
Object detection. Question 1 and Question 2 are designed
for object detection. During our experiments, we observed a
high false-positive rate in object detection using the first two
questions, primarily because the model occasionally gener-
ates a composite object embodying features of both objects
A and B. Consequently, even if there is a single object dis-
playing both sets of features, the chatbots are likely to af-
firmatively respond to the first two questions. To mitigate
this issue, we introduced Question 3, aimed at filtering out
objects that exhibit mixed features. For object detection, a
generation is deemed correct only if it successfully passes
Questions 1, 2, and 3.
Relationship detection. Question 4 is designed to steer
the chatbot towards creating contexts that emphasize the
relationships between objects, thereby setting the stage for
Question 5. Regarding relationship generation, a relation-
ship generation is classified as correct only if the chatbot’s
response to the Question 5 aligns with the prompt for gen-
erating the given image.

D.3. Additional Implementation details.

Implementation details of HGCN. In our implementation,
the HGCN is built with DGL [43]. We use the HGCN
based on Graph Attention Networks (GAT) [30]. The di-
mension of HGCN’s hidden layers is 512. The learning rate
of HGCN is set to 3e-4. The optimizer used is AdamW [31].
The training batch size is set to 1.



Figure 9. Additional results of action relation rectification with RRNet.

E. Limitations
E.1. Unseen concepts

Our method is capable of steer the generation of SD
by adjusting the direction of the relations in the text



Figure 10. Additional results of positional relation rectification with RRNet.

embeddings. Since we do not modify any parameters
in denoising network, there are limitations to our ap-
proach for concepts that do not exist in SD. We show

a failure case in Figure 12. Although our method sep-
arates the “A horse rides an astronaut” from
“An astronaut rides a horse”, SD lacks the



Figure 11. After replacing the Veot, a phenomenon of entity re-
placement occurred.

concept of a horse riding anything, leaving the RRNet direc-
tionless in adjusting the horse-astronaut relationship. Con-
sequently, most generated images are mere variations of ex-
isting dataset images. we observe that for such abstract re-
lations, we need a larger λ to ensure the generated images
meaningful, which in term undermines the images’ quality.

E.2. Multi-relationships generation

we employed multiple RRNets, initially trained on sim-
ple paired relations, to handle more complex scenarios in
image generation. The results are illustrated in the Figure
13. Although generated results looks reasonable, there is a
noticeable drop in performance as the complexity of rela-
tionships and objects increases. The occurrence of this phe-
nomenon is likely due to multiple RRNETs simultaneously
adjusting the Veot, resulting in semantic confusion within
Veot. Therefore, we believe that exploring how to construct
a more complex graph to generate one adjustment vector
capable of jointly rectifying multiple relational semantics is
a highly promising avenue for future research.

Figure 12. Failure case. The model has no sense of how horse
rides on other objects.

Figure 13. Generation of Complex Relationships.


