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This material includes the following parts:
• Sec. 1 provides the pseudo code for illustrating how to in-

corporate our SaCo loss with the baseline vision-language
model.

• Sec. 2 provides the detailed dataset descriptions and ex-
perimental settings for pre-training.

• Sec. 3 introduces the evaluation tasks and settings in de-
tail, including the datasets, experimental setups and im-
plementation details for each task.

• Sec. 4 presents more experiments and analysis, including
the comparison on different pre-training strategies (Sec.
4.1), evaluation on linear-prob image classification (Sec.
4.2), and analysis on pre-training cost (Sec. 4.3).

• Sec. 5 discusses more about the solutions to instability
problems when pre-training from scratch.

1. Pseudo Code
Our proposed SaCo loss can be incorporated with the ex-
isting vision-language models. For better understanding,
we take the popular CLIP [12] model as an example, and
present the pseudo-code of integrating our SaCo loss into
it. Algorithm 1 and Algorithm 2 correspond to the process
of “pre-training from scratch” and “continue pre-training”
settings, respectively.

2. Pre-training Details
2.1. Pre-train Datasets

We utilize two commonly used open-source image-text
datasets at varying scales, with around 3M and 15M pairs,
respectively. It is worth noting that, due to expired image
links or non-English captions, we were unable to obtain
complete data for these datasets. Consequently, there might
be slight performance discrepancies when comparing mod-
els trained on the complete image versions. We compare
the data volume of the original version and our collected

*Equal contribution.
†Corresponding author.

Algorithm 1: Pre-train CLIP from scratch with
our SaCo loss

Input: image-text pair dataset D = {(xI
j , x

T
j )}Dj=1, total

iterations T , batch size n, loss weight α and β,
image pseudo-affinity S̃I , a randomly initialized
CLIP model (including projection weight W I and
WT , image encoder, text encoder, temperature τ )

1 for i from 1 to T do
2 # sample a mini-batch of images and texts
3 sample (xI

i ,x
T
i ) ∼ D

4 # extract image and text embedding
5 Ĩi = image encoder (xI

i ) # [n, dI ]

6 T̃i = text encoder (xT
i ) # [n, dT ]

7 # projection & L2 normalization
8 Ii = L2 norm (̃Ii ·W I , axis=1) # [n, d]

9 Ti = L2 norm (T̃i ·WT , axis=1) # [n, d]
10 # contrastive loss
11 logits = np.dot (Ii, Ti.T) / τ # [n, n]
12 labels = np.arange(n)
13 LI

cont = cross entropy (logits, labels, axis=0)
14 LT

cont = cross entropy (logits, labels, axis=1)
15 Lcont = (LI

cont + LT
cont) / 2

16 # SaCo loss
17 image affinity SI

i = np.dot (Ii, Ii.T) # [n, n]

18 text affinity ST
i = np.dot (Ti, Ti.T) # [n, n]

19 LSaCo = np.sum
(
np.abs(SI

i − ST
i )
)

20 # pseudo-affinity mimic loss
21 Lmimic = np.sum

(
np.abs(SI

i − S̃I
i )
)

22 # total loss
23 Ltotal = Lcont + αLSaCo + βLmimic

24 end

version in Table 1. Below are detailed descriptions of these
two datasets:

CC3M [13]. This dataset was collected from 5 billion web
pages, and public by Google in 2018. It contains 3,318,333
image-text pairs, where the image descriptions are obtained
from the HTML alt-text attribute. Unfortunately, around
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Dataset Original Our Collected

CC3M 3.3M 2.8M
YFCC15M 15.4 M 15.0M

Table 1. Comparison of the size of the pre-train dataset under the
original version and our collected version. Due to the expired im-
age link, our collected version has less data compared to its origi-
nal counterpart.

0.5M images are inaccessible due to the broken image links,
so we finally collected around 2.8M image-text pairs for
pre-training.
YFCC15M [7]. This dataset is a subset of YFCC100M
[14]. It has two primary versions: YFCC15M-V1 was cre-
ated by applying the same filtering rule used in CLIP [12],
while YFCC15M-V2 was obtained through DeCLIP [7] us-
ing a distinct filtering strategy. In addition, the YFCC15M-
V2 dataset also encompasses additional data collected from
the Internet. Since YFCC15M-V2 is of superior quality
than YFCC15M-V1, we use YFCC15M-V2 in our exper-
iments and omit it to “YFCC15M”.
LLaVA-595K [9]. This dataset was constructed by LLaVA
[9]. It contains 595k image-text pairs filtered from CC3M
to strike a balance between concept coverage and training
efficiency.

2.2. Pre-train Settings

In our paper, we explore two pre-training strategies, namely
pre-training from scratch and continue pre-training, respec-
tively. The training settings vary from the pre-training
strategies, which are detailed as follows.
Pre-training from Scratch. The models are trained for 32
epochs with a batch size of 2048. We adopt AdamW [10]
optimizer with a weight decay of 0.2. The learning rate first
increases linearly from 0.0001 to 0.001 within one epoch,
and then gradually decays until zero following the cosine
anneal strategy.
Continue Pre-training. Given a well-trained converged
vision-language model, we proceed to train it with our SaCo
loss as an additional objective. The training setting mainly
follows the baseline, except for fewer epochs and a smaller
learning rate. Specifically, when continuously pre-training
on OpenAI’s CLIP [12] model, we employ the AdamW [10]
optimizer with a training duration of one epoch. The learn-
ing rate is set to 1e-6 and remains constant throughout the
training.

3. Downstream Evaluation Tasks
We perform evaluations across a wide range of tasks,
including both cross-modality tasks and single-modality

Algorithm 2: Continue pre-train a well-trained
CLIP with our SaCo loss

Input: image-text pair dataset D = {(xI
j , x

T
j )}Dj=1,

total iterations T , batch size n, loss weight α,
well-trained CLIP model (including projection
weight W I and WT , temperature τ , image
encoder, text encoder)

1 for i from 1 to T do
2 # sample a mini-batch of images and texts
3 sample (xI

i ,x
T
i ) ∼ D

4 # extract image and text embedding
5 Ĩi = image encoder (xI

i ) # [n, dI ]

6 T̃i = text encoder (xT
i ) # [n, dT ]

7 # projection & L2 normalization
8 Ii = L2 norm (̃Ii ·W I , axis=1) # [n, d]

9 Ti = L2 norm (T̃i ·WT , axis=1) # [n, d]
10 # contrastive loss
11 logits = np.dot (Ii, Ti.T) / τ # [n, n]
12 labels = np.arange(n)
13 LI

cont = cross entropy (logits, labels, axis=0)
14 LT

cont = cross entropy (logits, labels, axis=1)
15 Lcont = (LI

cont + LT
cont) / 2

16 # SaCo loss
17 image affinity SI

i = np.dot (Ii, Ii.T) # [n, n]

18 text affinity ST
i = np.dot (Ti, Ti.T) # [n, n]

19 LSaCo = np.sum
(
np.abs(SI

i − ST
i )
)

20 # total loss
21 Ltotal = Lcont + αLSaCo

22 end

tasks. The datasets and implementation details for each task
are described as follows.

3.1. Zero-shot Classification

Zero-shot classification is the most commonly used down-
stream task for transferability evaluation. The text embed-
dings of the candidate class names are used as the classifier
to determine the probability that each image belongs to each
class. The performance of this task is measured by top-k ac-
curacy (k=1,5) in our paper.

Prompt Engineering. Since the image descriptions in pre-
training dataset are usually a long sentence rather than a
single-word class name, we employ prompts like ’a photo
of a class name’ to extend the class name through some
pre-defined templates. For a fair comparison, we follow the
prompt engineering strategy in CLIP [12] during zero-shot
classification evaluation. Specifically, each category has 80
text prompts, i.e., and class names with 80 different tem-
plates. We average the embedding of all the text prompts of
each category as its final classifier. The prompt engineering
can effectively narrow the domain gap between pre-training
data and test data and take into account the diverse circum-



stances of the images.

Datasets. We evaluate the zero-shot classification on the
widely-used ImageNet-1K dataset, which is designed to be
representative of real-world visual data. It is a large-scale
image classification dataset consisting of 1.28 million im-
ages belonging to 1,000 different classes. The classes cover
a wide range of concepts, such as animals, plants, everyday
objects, vehicles, and so on.

3.2. Zero-shot Image-Text Retrieval

Image-text retrieval task consists of two sub-tasks, namely
image-to-text (I2T) retrieval and text-to-image (T2I) re-
trieval, respectively. Taking text-to-image retrieval as an ex-
ample, it aims to retrieve the most images and texts given a
textual description. We report the Recall@k (k=1,5,10) for
performance comparison. In order to truly reflect the prop-
erty of pre-trained embedding space, we also evaluate this
task under zero-shot settings without fine-tuning. Specifi-
cally, we extract the image and text embeddings from the
corresponding encoders and perform retrieval based on the
cosine similarity between candidate image-text pairs.

Datasets. We report the zero-shot image-text retrieval re-
sults on two benchmarks, MS-COCO [8] and Flickr30K
[11]. MS-COCO [8] is a large-scale dataset designed for
a variety of computer vision tasks, including image recog-
nition, retrieval, segmentation, detection, and captioning. It
contains 330,000 images of 91 common object categories,
with more than 2.5 million object instances labeled and an-
notated with rich captions. For the image-text retrieval task,
the dataset provides a set of high-quality image-caption
pairs, where each image is accompanied by 5 captions de-
scribing the content of the image in detail. The captions
are written by human annotators, which ensures that they
are accurate and relevant to the image. The captions are
designed to be descriptive, not just literal, and they capture
the overall meaning and context of the image. For a fair
comparison, we only evaluate its test set containing 5,000
images following previous works [1, 3, 6, 15]. Flickr30K
[11] consists of 31,783 images of everyday activities and
scenes, collected from the Flickr website. Each image has
5 textual descriptions, obtained from Amazon’s Mechanical
Turk service. We evaluate its test set with 1,000 images.

3.3. Image Classification

Image Classification is a typical task to evaluate the quality
of learned vision embedding space of a pre-trained vision-
language model. In our experiments, we evaluate this task
under a linear probe setting without disturbing the pre-
trained image embedding space. Specifically, the image
encoder is frozen and regarded as a feature extractor. For
each training image, we first extract its image feature and
then learn an extra linear classifier on top of it to predict

the probability of each class. We report top-1 accuracy to
measure the performance.
Linear Prob Settings. We train a linear classifier on top
of the frozen features extracted from the image encoder.
The linear classifier is optimized using AdamW [10] for 90
epochs with a batch size of 1024. The learning rate is ini-
tially set to 5e-4 and then decreases until zero following the
cosine strategy. The image is resized to 224×224 during
both training and evaluation.
Datasets. Our experiments are conducted on four image
classification datasets. ImageNet-1K [2] is one of the most
widely-used image recognition datasets with 1,000 cate-
gories. More information is provided in Sec. 3 above. Tiny-
ImageNet [5] is a subset of the ImageNet dataset, includ-
ing 100,000 images with 200 categories. Each class has
500 training images, 50 validation images, and 50 test im-
ages. It provides a more condensed dataset compared to
the full-scale ImageNet, while still maintaining a diverse
set of object classes and image variations. Each image has
a size of 64×64 by default. CIFAR-10 [4] is a classical
dataset in the computer vision field, which was created by
the Canadian Institute for Advanced Research (CIFAR). It
consists of 60,000 images, 50,000 for training, and 10,000
for testing, each of size 32×32 pixels. All the images are
uniformly divided into 10 categories, with 6,000 images
per class. CIFAR-100 [4] is an extension of the CIFAR-10
dataset, designing to be more challenging and comprehen-
sive. It consists of 60,000 images, each of which is assigned
a category label within 100 classes and has a resolution of
32×32 pixels. Similarly, these images are split into train-
ing and testing sets with 50,000 and 10,000 images, respec-
tively. The categories cover a wide range of fine-grained
concepts, including objects, animals, vehicles, and natural
scenes.

4. More Experiments
4.1. Pre-train from Scratch vs. Continue Pre-train

As mentioned in the main paper, we present two pre-
training strategies when incorporating our SaCo loss with
the baseline model, namely pre-training from scratch and
continue pre-training. Pre-training from scratch is the
most commonly used strategy during vision-language pre-
training, while continue pre-training is a more efficient
manner to improve the embedding space of a well-trained
model. In order to investigate the effect of these two pre-
training strategies, we train the CLIP-R50 model with our
SaCo loss from scratch and continuously, respectively.

As shown in Table 2, continue pre-training achieves con-
sistent improvements on both tasks, especially the retrieval
task. Pre-training from scratch can bring further improve-
ments, among which classification tasks benefit more sig-
nificantly. This demonstrates that pre-training from scratch



Method

Zero-shot Classification Zero-shot Image-text Retrieval

ImageNet-1K [2] Flickr30K [11] MS-COCO [8]

Top-1 Accuracy Image → Text Text → Image Image → Text Text → Image
Recall@1 Recall@5 Recall@1 Recall@5 Recall@1 Recall@5 Recall@1 Recall@5

CLIP 17.9 29.2 58.5 24.8 51.7 16.4 38.2 13.3 32.4
CLIP + Ours♢ 20.2 (+2.3) 40.9 (+11.7) 70.6 (+12.1) 30.5 (+5.7) 56.5 (+4.8) 21.1 (+4.7) 45.0 (+6.8) 16.0 (+2.7) 36.2 (+3.8)
CLIP + Ours♣ 22.5 (+4.6) 42.0 (+12.8) 72.1 (+13.5) 31.8 (+7.0) 57.8 (+6.1) 21.1 (+4.7) 45.3 (+7.1) 16.0 (+2.7) 36.5 (+4.1)

Table 2. Comparison of different pre-training strategies. All the models are pre-trained on the CC3M dataset and evaluated on zero-shot
classification and zero-shot image-text retrieval tasks. We employ CLIP with an R50 image encoder as the baseline model. The superscript
♣ represents the corresponding model pre-trained from scratch. The superscript ♢ means that the model is obtained by continuously pre-
training the baseline model equipped with our SaCo loss.

Method Image Encoder ImageNet-1K [2] Tiny-ImageNet [5] CIFAR-10 [4] CIFAR-100 [4]

CLIP R50 46.4 30.5 62.5 41.7
CLIP + Ours R50 60.7 (+14.3) 37.5 (+7.0) 75.4 (+12.9) 55.4 (+13.7)

CLIP ViT-B/32 36.0 48.4 77.0 54.6
CLIP + Ours ViT-B/32 48.7 (+12.7) 55.7 (+7.3) 88.7 (+11.7) 69.3 (+14.7)

CLIP ViT-B/16 45.4 42.5 77.9 56.7
CLIP + Ours ViT-B/16 56.1 (+10.7) 49.7 (+7.2) 89.2 (+11.3) 70.0 (+13.3)

Table 3. Linear prob image classification results (top-1 accuracy). All the models are pre-trained from scratch on the CC3M dataset.

performs best and maximizes the benefits of our approach.
This can be attributed to the fact that continue pre-training
is more about promoting the cross-modal affinity consis-
tency by slightly adjusting the embedding space, while dur-
ing pre-training from scratch, our loss can consistently play
a role in the learning process of the embedding space from
chaos to alignment, giving it more opportunities to converge
to a better state.

4.2. Image Classification

Table 3 compares the linear probe image classification per-
formance on four datasets. The performance is evaluated on
various datasets, including ImageNet-1K, Tiny-ImageNet,
CIFAR-10, and CIFAR-100. Comparing the results, it is
evident that the combination of CLIP with the additional
method consistently improves the classification accuracy
across all encoders and datasets. Notably, our approach
achieves significant performance gains in all scenarios. For
example, when using the R50 encoder, the CLIP + Ours
approach achieves an accuracy of 60.7% on ImageNet-
1K, showing a remarkable improvement of 14.3 percent-
age points. Similarly, for Tiny-ImageNet, CIFAR-10, and
CIFAR-100, our approach demonstrates substantial accu-
racy gains of 7.0%, 12.9%, and 13.7%, respectively. These
results highlight the effectiveness of our approach in en-
hancing the performance of linear prob image classification.

We also present a feature visualization analysis of CLIP
and the model trained using our proposed approach on the
CIFAR-10 dataset in Figure 1. It is evident that our ap-
proach significantly improves the feature distribution in the

Figure 1. Feature visualization on the CIFAR-10 dataset. The
visualization technique employed is T-SNE, which enables the
representation of high-dimensional feature vectors in a lower-
dimensional space.

feature space of CLIP. The problem of intertwined, over-
lapping, and mixed features between different classes is no-
tably alleviated. For instance, the distribution of features
for objects such as airplane and bird becomes closer in the
feature space, indicating a more reasonable semantic rela-
tionship learned by our approach.

4.3. Computational Cost Analysis

Since our loss is only used during training, it has no im-
pact on the inference efficiency and only affects the training
computational cost. Table 4 shows the quantitative compar-
ison in terms of the GPU memory and time consumption per
iteration. We report the average results for 10 runs. It can be
found that our loss only brings minor additional GPU mem-
ory cost (14.73 vs.14.85 GB) and time consumption (0.66
vs.0.69 seconds). The cost of pre-training from scratch is
slightly higher than continue pre-training due to the pseudo-



Figure 2. Visualization of zero-shot image-text retrieval. The baseline model is CLIP with R50 image encoder. All the models are pre-
trained from scratch on CC3M dataset. The example are selected from Flickr30K dataset.

Method GPU
memory

Time
(per iteration)

CLIP 14.73 GB 0.66 s
CLIP + Ours (continue pre-train) 14.81 GB 0.68 s
CLIP + Ours (pre-train from scratch) 14.85 GB 0.69 s

Table 4. Comparison of pre-training cost in terms of GPU mem-
ory and time consumption per iteration. The baseline model is
CLIP with ViT-B/32 image encoder.

affinity mimicking objective. Note that the pseudo-affinity
can be pre-extracted before training, so it will not lead to
much computational burden.

4.4. More Visualization

Figure 2 presents visualizations for image-text retrieval re-
sults. It is evident that our approach significantly improves
the relevance of retrieved text to the image content com-
pared to the baseline. For instance, the last two retrieved
texts by the baseline method are almost irrelevant to the im-
age content, such as ”chef”, ”chicken” and ”wheel”. In con-
trast, our approach promotes the retrieval of more relevant
text that better aligns with the image content. This improve-
ment is critical in enhancing the overall performance of the
CLIP model in image-text retrieval tasks.

5. Discussion on Training Instability Problem
As mentioned in Sec.4.2.1 in the main paper, when pre-
training a vision-language model with our loss from scratch,
a problem of training instability will be encountered. In par-
ticular, our SaCo loss first drops sharply, then begins to rise
for a while, and finally decreases again in the later training
stage (refer to the yellow curve of Figure 3b in the main
paper). Through experimental analysis, we find that the
underlying reason is related to the trade-off between con-
trastive learning and affinity consistency constraint. In the
early training stage, the affinity in both modalities is ex-
tremely noisy due to the chaotic embedding space. At this
time, it is ineffective to overemphasize the affinity consis-
tency, and the excessive consistency constraint will hinder

the optimization of embedding space. Accordingly, we de-
signed several strategies to solve this problem. Here, we
give more discussion on the motivation, implementation de-
tails, experimental results, and analysis for these strategies.

Strategy-1: Incremental loss weight. Inspired by the
above analysis, we relax the affinity consistency constraint
when the affinity is not accurate enough. Considering that
inaccurate affinity is more likely to appear in the early train-
ing stage, we gradually increase the weight α of the SaCo
loss in Eq.(6) of the main paper as the training progresses.
We compare several common weight-increasing schemes,
namely linear, exponential, and polynomial in Table 5. The
linear scheme performs best among them. Unfortunately,
although such instability problem can be alleviated via this
strategy to a certain extent (yellow curve vs. light-green
curve of Figure 3b in the main paper), it still cannot be erad-
icated.

Strategy-2: Sample-wise masking. Intuitively, if the im-
age and text representation is less precise or unaligned, it
will also have a negative impact on affinity accuracy. In
this case, our affinity consistency constraint should be re-
laxed and the optimization of representation requires suf-
ficient tolerance. Motivated by this, for each image-text
pair, we utilize the similarity between its image and text
embeddings as a criterion to assess the quality of its repre-
sentations. Larger similarity means more reliable represen-
tations. Given the similarity of all the image-text pairs, we
can simply obtain a binary mask by thresholding the sim-
ilarity, where the element “0” in the binary mask denotes
the corresponding pair is ignored when computing the SaCo
loss, and element “1” means the corresponding pair will be
subjected to the SaCo loss. We call this strategy “Sample-
wise hard masking”. In addition, as the similarity ranges
from 0 to 1, we can also treat the similarity as a sample-
wise soft weight coefficient for SaCo loss, which is termed
“Sample-wise soft masking”. Table 5 compares the perfor-
mance of these two masking strategies. It can be seen that
their performance is similar, and hard masking is slightly
better. So, the results of the sample-wise masking strategy
shown in Figure 3b and Figure 5b of the main paper corre-



Method Strategy ImageNet-1K Flickr30K MS-COCO
Top-1 Acc. I2T(R@1) T2I(R@1) I2T(R@1) T2I(R@1)

CLIP - 11.9 16.0 12.2 8.2 6.5

CLIP + Ours - 16.2 21.3 15.8 11.0 7.9

CLIP + Ours Incremental loss weight (exponential) 16.6 23.2 17.1 12.3 9.4
CLIP + Ours Incremental loss weight (polynomial p=2) 16.3 22.9 17.0 12.1 8.9
CLIP + Ours Incremental loss weight (linear) 17.7 23.4 17.3 12.5 9.4

CLIP + Ours Sample-wise hard masking 17.2 22.8 16.2 12.1 8.6
CLIP + Ours Sample-wise soft masking 17.1 23.5 16.3 11.9 8.5

CLIP + Ours Pseudo-affinity mimicking 18.3 25.3 18.3 13.5 10.2

Table 5. Comparison of different strategies for training instability problem. We use CLIP with ViT-B/32 as the baseline model. All the
models are pre-trained from scratch on the CC3M dataset. We evaluate zero-shot classification on ImageNet-1K [2] dataset, and zero-shot
image-text retrieval on Flickr30K [11] and MS-COCO [8] datasets. “R@1” and “Acc.” are short for “Recall@1” and accuracy, respectively.
“I2T” and “T2I” represent image-to-text retrieval and text-to-image retrieval, respectively.

spond to the hard masking for its slight superiority. How-
ever, this masking-based strategy is also unable to essen-
tially solve this problem. Although the performance has
improved, the SaCo loss still has a recovery stage (Figure
3b in the main paper).
Strategy-3: Pseudo-affinity mimicking. The above two
ineffective strategies aim to avoid the excessive consistency
constraints on inaccurate affinity. Different from them, we
find that directly promoting the accuracy of affinity is a
more effective solution. As described in the main paper, we
introduce a pseudo-affinity mimicking objective to mimic
the affinity of the training model with that of a well-trained
model. Experimental results show that this strategy is the
most effective one while with minor additional computa-
tional costs.
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