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In this supplementary file, we provide the following materials:
• Ablation studies on the proposed LRE strategy and DAPE module;
• Complexity analysis;
• More real-world visual comparisons under scaling factor 4×

1. Ablation Study
We first discuss the effectiveness of the proposed LRE strategy. Then, we discuss the effectiveness of the proposed DAPE
module, including its tagging capability and the roles of hard and soft prompts.

Effectiveness of LRE. We first show the Real-ISR performance of our SeeSR model on the DIV2K-Val and DrealSR datasets
with and without the LRE strategy. The results are shown in Table 1. One can see that the LRE strategy improves the
reference-based metrics, including both fidelity and perception based ones, while it weakens the no-reference metrics such
as CLIPIQA. This is because the LRE strategy reduces the model’s tendency to generate additional (but maybe unfaithful)
textures by narrowing the gap between training and testing (see discussions in Section 3.4 of the main paper). Such an over-
generation ability can be favorable by metrics like CLIPIQA, but they will introduce visually unpleasant artifacts, as shown
in Fig. 3 of the main paper.

Tagging Performance of DAPE. In Table 2, we present the tagging performance of our DAPE module on the degraded
images of COCO-val benchmark [2] based on three metrics: overall precision (OP), overall recall (OR), and average precision
(AP). AP is the averaged precision calculated on different recall rates, which is similar to the detection metric. OP and OR
are defined as:
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where C is the number of classes, Np
i is the number of images predicted for label i, N t

i is the number of images correctly
predicted for label i, and Ng

i is the number of ground truth images for label i.
We evaluate RAM [11] and DAPE with the default threshold. DAPE surpasses RAM in terms of OP and AP by 0.1 and

10.7, respectively. It also maintains superiority in OR, indicating that DAPE achieves significant improvements in tagging
accuracy for degraded images. This improvement assists the T2I model in generating semantically accurate details when
performing the Real-ISR task.

Effectiveness of DAPE and Hard/Soft Prompts for Real-ISR. DAPE improves the model’s tagging performance on de-
graded images and consequently enhances the Real-ISR capability. To investigate the effectiveness of DAPE and the roles of
its hard/soft prompts, we conducted the following four experiments in Real-ISR tasks.

1. We retrain SeeSR by removing the DAPE and RCA modules, which can be considered as applying ControlNet [10]
directly to the Real-ISR task.

*Corresponding author. This work is supported by the Hong Kong RGC RIF grant (R5001-18) and the PolyU-OPPO Joint Innovation Lab.



Table 1. The Real-ISR performance of our SeeSR model with and without LRE on DIV2K-Val and DrealSR [7] benchmarks.

Metrics DIV2K-Val DrealSR
w/o LRE w/ LRE w/o LRE w/ LRE

PSNR ↑ 20.58 21.04 26.55 27.90
LPIPS ↓ 0.3942 0.3876 0.3952 0.3299

FID ↓ 32.53 32.79 158.04 151.88
CLIPIQA ↑ 0.7314 0.6834 0.7248 0.6708

Table 2. Comparison between RAM and DAPE on degraded images of COCO-val benchmark [2] for the tagging task.

OP ↑ OR ↑ AP ↑
RAM [11] 0.7929 0.3711 52.3
DAPE 0.8940 0.3751 63.0

Table 3. Ablation studies of DAPE on DIV2K-Val and DrealSR [7] benchmarks for the Real-ISR task.

Exp (1) (2) (3) (4) SeeSR

Prompt Extractor RAM [11] % ! % % %

DAPE % % ! ! !

Prompt Format Hard Prompt % ! ! % !

Soft Prompt % ! % ! !

DIV2K-Val

PSNR ↑ 20.96 21.15 20.91 21.19 21.04
LPIPS ↓ 0.4236 0.4156 0.4289 0.3859 0.3876

FID ↓ 37.35 46.34 38.92 38.77 32.79
CLIPIQA ↑ 0.6343 0.6097 0.6471 0.6751 0.6834

DrealSR

PSNR ↑ 27.64 27.31 27.45 28.14 27.90
LPIPS ↓ 0.3130 0.3272 0.3285 0.3174 0.3299

FID ↓ 176.26 161.69 164.57 157.63 151.88
CLIPIQA ↑ 0.5693 0.6436 0.6410 0.6431 0.6708

2. We replace DAPE with RAM [11] and retrain the model.
3. During the inference of SeeSR, we provide only the hard prompts (i.e., the tag) generated by DAPE to the text

encoder of the T2I model.
4. During the inference of SeeSR, we provide only the soft prompts (i.e., the representation embedding features)

generated by DAPE to the T2I model.

The results of the four experiments are shown in Table 3. Moreover, the visual comparisons are shown in Fig. 1. From
Table 3 and Fig. 1, we can have the following conclusions.

First, directly applying ControlNet to the Real-ISR task cannot achieve satisfactory results. Second, replacing DAPE with
the original RAM would lead to a decrease in all perceptual metrics (e.g., LPIPS and CLIPIQA). The semantics of the image
content may also be changed (see Fig. 1). This is because the original RAM may generate inaccurate prompts (e.g., the tag
‘broccoli’) from the degraded image. Third, the soft prompts work better in improving the numerical indices than the hard
prompts, as well as sharper images. However, without hard prompts, the image semantics can be damaged, as can be seen
from the lemons in Exp. (4) of Fig. 1. Finally, with both the hard and soft prompts in DAPE, perceptually realistic and
semantically correct Real-ISR outputs can be produced.

2. Complexity Analysis
Table 4 compares the number of parameters of different Real-ISR models and their inference time to synthesize a 512× 512
image from 128 × 128 input. All tests are conducted on one NVIDIA Tesla 32G-V100 GPU. We can have the following
observations.

First, the GAN-based Real-ESRGAN and FeMaSR have much less model parameters and much faster inference speed



Figure 1. Visual comparison for the ablation study on DAPE. Exp. (1) directly applies ControlNet to perform Real-ISR, leading to blurry
results. Exp. (2) replaces DAPE with RAM for generating prompts, which can produce sharper but semantically incorrect details. Exp.
(3) applies hard prompts only and generates blurry results. Exp. (4) applies soft prompts only and exhibits semantic errors in details
generation. With both hard and soft prompts in DAPE, SeeSR produces clear and semantically correct outputs.

Table 4. Complexity comparison between different methods. All the tests are conducted on one NVIDIA Tesla 32G-V100 GPU to
synthesize 512× 512 images from 128× 128 inputs.

Methods Params Inference
Time-steps

Inference
Time

Real-ESRGAN [6] 16.7M 1 0.09s
FeMaSR [1] 28.3M 1 0.12s

LDM [4] 169.0M 200 5.21s
StableSR [5] 1409.1M 200 18.70s
ResShift [9] 173.9M 15 1.12s
PASD [8] 1900.4M 20 6.07s

DiffBIR [3] 1716.7M 50 5.85s
SeeSR 2283.7M 50 7.24s

than DM-based methods. Second, among the DM-based models, LDM and ResShift are much smaller than others because
they employ relatively lightweight diffusion models. ResShift runs faster than LDM because it samples only 15 steps while
LDM samples 200 steps. Third, StableSR, PASD, DiffBIR and our SeeSR are all based on the pre-trained T2I model. SeeSR
has more parameters because it has a DAPE module (about 300M) finetuned from the RAM model. In terms of inference
speed, PASD, DiffBIR and SeeSR are comparable, while StableSR is the slowest one because it samples 200 steps.

3. More Visualization Comparisons
We provide additional qualitative comparisons on real-world images. As shown in Fig. 2, SeeSR can generate sharper edges
(case 2) and semantically faithful details (the window railing in case 1, the teeth in case 3, and the vein textures in case 4).
Other methods are either blurry or produce unpleasant artifacts.



Figure 2. Qualitative comparisons of different methods on real-world examples. Please zoom in for a better view.
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