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Supplementary Material

A. More Discussions on Image Editing Capa-
bilities

In Fig. 6 of the main paper, we showcased an example of
object replacement contrasting our SLD method with previ-
ous approaches. In this section, we provide more visual ex-
amples in Fig. 2 that highlight the differences between SLD
and prior diffusion-based image editing methods. While In-
structPix2Pix [1] is confined to pixel-aligned changes (e.g.,
style changes), DiffEdit [2] often fails with precise object-
level edits. Our SLD framework excels in these detailed,
fine-grained editing tasks.

Furthermore, our exploration reveals that even a mod-
est set of four primitive latent operations within the SLD
framework is remarkably effective at addressing a broad
spectrum of editing applications. Beyond managing static
objects, as depicted in Fig. 1, SLD adeptly processes ac-
tions (verbs) linked to objects through an attribute change
operator. This operation can be easily extended to handle
global style variations. Additionally, the deletion operator
provides a means to eliminate undesirable/harmful content
from images. These above examples further illustrate the
wide-ranging utility of our method.

Figure 1. In addition to static objects with attributes, SLD can also
perform image editing on objects with action.

B. Comparison between LMMs and Detector-
LLM Combinations

In our main paper, we introduce a self-correction framework
that utilizes both LLMs and object detectors for image as-
sessment, followed by the provision of correction sugges-
tions. With the rapid evolution of Large Multimodal Mod-
els (LMMs) such as GPT-4V [9] and LLaVA [4, 5], we
have investigated the feasibility of using an LMM to con-
duct image assessment. In this setup, the LMM evaluates
images generated by the open-loop generator alongside user
prompts, aiming to provide precise, object-level editing rec-
ommendations.

However, GPT-4V’s analysis of the “princess and
dwarfs” image from DALL-E 3 (refer to Fig. 1 in our pa-

Figure 2. We demonstrate that current diffusion-based image
editing methods, such as InstructPix2Pix and DiffEdit, face chal-
lenges in fundamental operations like object deletion (top exam-
ple) and addition (bottom example). In contrast, our proposed
SLD pipeline can easily handle these tasks. As highlighted in
the red box, despite DiffEdit’s ability to identify the object for
removal, it falls short of generating a plausible background.

per) reveals inaccuracies, as the model miscounts the char-
acters, identifying seven dwarfs rather than the actual five,
and struggles to define precise bounding box coordinates.
In contrast, as highlighted in Fig. 3, the latest generation
open-vocabulary detector, OWL-ViT v2, demonstrates re-
markable proficiency in detecting minute objects (seagulls
in the sky), which is vital for the correction process. This
limitation underscores our current approach, which com-
bines detectors with LLMs for more accurate assessment
and editing suggestions. Nevertheless, the potential of inte-
grating advanced LMMs for streamlined image generation
and editing remains a compelling and promising direction
for future research and development.



Accuracy

Method Negation Numeracy Attribute Spatial Average

DALL-E 3 [8] 25% 38% 74% 71% 52.0%
+ 1-round SLD (OWL-ViT v1) 50% 51% 71% 82% 63.5% (+ 11.5)
+ 1-round SLD (OWL-ViT v2) 90% 61% 80% 83% 78.5% (+ 26.5)

LMD+ [3] 100% 82% 49% 86% 79.3%
+ 1-round SLD (OWL-ViT v1) 100% 85% 59% 89% 83.3% (+ 4.0)
+ 1-round SLD (OWL-ViT v2) 100% 98% 63% 92% 88.3% (+ 9.0)

Table 1. Our method can be applied to various image generation methods and improves the generation accuracy by a large margin.

Input Image Self-corrected Results (Ours)Detected Bounding Boxes

An oil painting at the beach of a blue bicycle to the left of a bench and to the right of a palm tree  
with three seagulls in the sky

Figure 3. Leveraging the advanced localization abilities of OWL-
ViT v2 open-vocabulary detectors, we accurately identify all seag-
ulls in the image, enabling selective removal to align with the
user’s prompt.

C. Comprehensive Image Generation Results

In the main paper, we demonstrate the significant self-
correction performance gain achieved by integrating open-
vocabulary detectors, the SAM segmentation module, and
LLMs into our SLD pipeline. To illustrate the adaptability
of our SLD model, we explore various combinations with
external models in this appendix, showing its robustness in
diverse settings. Additionally, we delve into the efficacy
of LLMs in layout correction, further evidencing the multi-
faceted strengths of our approach.

Tab. 1 presents a comparison between the results ob-
tained using OWL-ViT v1 [7] and OWL-ViT v2 [6] de-
tectors within our framework. The results indicate that
SLD consistently enhances overall accuracy compared to
the baseline text-to-image generators, irrespective of the de-
tector used. The marginal reduction in performance gains
when substituting the v2 detector can be attributed to two
main factors: 1) the relatively inferior detection capabil-
ities of the alternate detector employed in the SLD, and
2) the variations in object recognition between the two
detectors. This situation parallels real-world experiences,
where individual perceptions and recognition of objects or
attributes can vary significantly. For instance, a bowl per-
ceived as distinctly blue by one might be seen as less blue
by another. These perceptual variances contribute to the
marginally lower attribute binding scores of SLD compared

to the original DALL-E 3 results. Despite these discrepan-
cies, the overall accuracy of our method, especially in areas
such as numeracy and spatial reasoning, confirms the effec-
tiveness of SLD, regardless of the specific detector used in
our self-correction pipeline.

Tab. 2 ablated the choices of different LLMs and seg-
mentation refinement modules in our pipeline. The result
shows that SLD is robust to different model choices. In
Tab. 3, we assess the LLM controller’s success rate in cor-
recting images from baseline LMD+ to see if the LLM has
the superpower of outputting correct instruction and even
bounding box coordinates purely through in-context learn-
ing. We use the same setting as Tab. 1 in the main paper, ex-
cept that we evaluate bounding boxes provided to/corrected
by the LLM, without the actual editing. While the base-
line has a 20.7% error rate, the corrected boxes only have
1.0% error rate, indicating that the LLM corrected almost
all incorrect bounding boxes in the benchmark, which sug-
gests that accuracies of latent operations rather than LLM’s
abilities are the bottleneck.

Method | Accuracy → Negation Numeracy Attribute Spatial Average

SLD (default, GPT-4, SAM-base) 100% 98% 63% 92% 88.3%

SLD (GPT-4→GPT-3.5) 100% 95% 61% 89% 86.3%
SLD (SAM-base→SAM-huge) 100% 96% 62% 95% 88.3%

Table 2. Ablation studies on different LLMs and SAM modules in
the SLD pipeline.

Accuracy (success rate): evaluating the input/output
bounding boxes of our LLM self-correction controller

Method Negation Numeracy Attribute Spatial Average

Before self-correction 100% 82% 49% 86% 79.3%
After self-correction 100% 100% 98% 98% 99.0% (+19.7)

Table 3. The LLM controller prompted with several in-context
examples can correct most incorrect bounding boxes.



D. Our Prompts and Instructions to the LLM
As outlined in the main paper, we leverage two LLMs
to steer the self-correction process: we employ one LLM
parser to identify key objects from user prompts and another
LLM controller to propose bounding box adjustments. The
specific prompts for both the parser and the controller are
detailed in Tab. 4 and Tab. 5, respectively. We also pro-
vide in-context examples for the LLM controller, tailored
for self-correcting generation and image editing, in Tab. 6
and Tab. 7, respectively.

In crafting our LLM prompts, we emphasized clarity in
defining the roles and guidelines for the LLM, drawing in-
spiration from prior work [11]. Notably, we discovered
that GPT-4 possesses the capability to manipulate bounding
box coordinates, a task that involves mathematical reason-
ing. We achieved improved results by guiding the model to
employ chain-of-thought reasoning [10], where the model
explicates its reasoning process during generation. This
approach yielded more accurate suggestions compared to
instances where the model’s reasoning was not explicitly
stated.



1 # Your Role: Excellent Parser
2

3 ## Objective: Analyze scene descriptions to identify objects and their attributes.
4

5 ## Process Steps
6 1. Read the user prompt (scene description).
7 2. Identify all objects mentioned with quantities.
8 3. Extract attributes of each object (color, size, material, etc.).
9 4. If the description mentions objects that shouldn’t be in the image, take note at the negation part.

10 5. Explain your understanding (reasoning) and then format your result (answer / negation) as shown in
the examples.

11 6. Importance of Extracting Attributes: Attributes provide specific details about the objects. This
helps differentiate between similar objects and gives a clearer understanding of the scene.

12

13 ## Examples
14

15 - Example 1
16 User prompt: A brown horse is beneath a black dog. Another orange cat is beneath a brown horse.
17 Reasoning: The description talks about three objects: a brown horse, a black dog, and an orange

cat. We report the color attribute thoroughly. No specified negation terms.
18 Objects: [(’horse’, [’brown’]), (’dog’, [’black’]), (’cat’, [’orange’])]
19 Negation:
20

21 - Example 2
22 User prompt: There’s a white car and a yellow airplane in a garage. They’re in front of two dogs

and behind a cat. The car is small. Another yellow car is outside the garage.
23 Reasoning: The scene has two cars, one airplane, two dogs, and a cat. The car and airplane have

colors. The first car also has a size. No specified negation terms.
24 Objects: [(’car’, [’white and small’, ’yellow’]), (’airplane’, [’yellow’]), (’dog’, [None, None]),

(’cat’, [None])]
25 Negation:
26

27 - Example 3
28 User prompt: A car and a dog are on top of an airplane and below a red chair. There’s another dog

sitting on the mentioned chair.
29 Reasoning: Four objects are described: one car, airplane, two dog, and a chair. The chair is red

color. No specified negation terms.
30 Objects: [(’car’, [None]), (’airplane’, [None]), (’dog’, [None, None]), (’chair’, [’red’])]
31 Negation:
32

33 - Example 4
34 User prompt: An oil painting at the beach of a blue bicycle to the left of a bench and to the

right of a palm tree with five seagulls in the sky.
35 Reasoning: Here, there are five seagulls, one blue bicycle, one palm tree, and one bench. No

specified negation terms.
36 Objects: [(’bicycle’, [’blue’]), (’palm tree’, [None]), (’seagull’, [None, None, None, None,

None]), (’bench’, [None])]
37 Negation:
38

39 - Example 5
40 User prompt: A realistic photo of a scene without backpacks.
41 Reasoning: The description clearly states no backpacks, so this must be acknowledged. The user

provides the negative prompt of backpacks.
42 Objects: [(’backpacks’, [None])]
43 Negation: backpacks
44

45 Your Current Task: Follow the steps closely and accurately identify objects based on the given prompt.
Ensure adherence to the above output format.

46

47 User prompt: {the input user prompt}
48 Reasoning:

Table 4. Our full prompt for the LLM parser.



1 # Your Role: Expert Bounding Box Adjuster
2

3 ## Objective: Manipulate bounding boxes in square images according to the user prompt while
maintaining visual accuracy.

4

5 ## Bounding Box Specifications and Manipulations
6 1. Image Coordinates: Define square images with top-left at [0, 0] and bottom-right at [1, 1].
7 2. Box Format: [Top-left x, Top-left y, Width, Height]
8 3. Operations: Include addition, deletion, repositioning, and attribute modification.
9

10 ## Key Guidelines
11 1. Alignment: Follow the user’s prompt, keeping the specified object count and attributes.
12 2. Boundary Adherence: Keep bounding box coordinates within [0, 1].
13 3. Minimal Modifications: Change bounding boxes only if they don’t match the user’s prompt.
14 4. Overlap Reduction: Minimize intersections in new boxes and remove the smallest, least overlapping

objects.
15

16 ## Process Steps
17 1. Interpret prompts: Read and understand the user’s prompt.
18 2. Implement Changes: Review and adjust current bounding boxes to meet user specifications.
19 3. Explain Adjustments: Justify the reasons behind each alteration and ensure every adjustment abides

by the key guidelines.
20 4. Output the Result: Present the reasoning first, followed by the updated objects section, which

should include a list of bounding boxes in Python format.
21

22 ## Examples
23

24 {In-context examples for self-correcting image generation or image editing}
25

26 Your Task: Carefully follow the provided guidelines and steps to adjust bounding boxes in accordance
with the user’s prompt. Ensure adherence to the above output format.

27

28 User prompt: {the input user prompt}
29 Current Objects: {a list of detected key objects}
30 Reasoning:

Table 5. Our full prompt for the LLM controller.



1 # Examples
2

3 - Example 1
4 User prompt: A realistic image of landscape scene depicting a green car parking on the left of a

blue truck, with a red air balloon and a bird in the sky
5 Current Objects: [(’green car #1’, [0.027, 0.365, 0.275, 0.207]), (’blue truck #1’, [0.350, 0.368,

0.272, 0.208]), (’red air balloon #1’, [0.086, 0.010, 0.189, 0.176])]
6 Reasoning: To add a bird in the sky as per the prompt, ensuring all coordinates and dimensions

remain within [0, 1].
7 Updated Objects: [(’green car #1’, [0.027, 0.365, 0.275, 0.207]), (’blue truck #1’, [0.350, 0.369,

0.272, 0.208]), (’red air balloon #1’, [0.086, 0.010, 0.189, 0.176]), (’bird #1’, [0.385, 0.054,
0.186, 0.130])]

8

9 - Example 2
10 User prompt: A realistic image of landscape scene depicting a green car parking on the right of a

blue truck, with a red air balloon and a bird in the sky
11 Current Output Objects: [(’green car #1’, [0.027, 0.365, 0.275, 0.207]), (’blue truck #1’, [0.350,

0.369, 0.272, 0.208]), (’red air balloon #1’, [0.086, 0.010, 0.189, 0.176])]
12 Reasoning: The relative positions of the green car and blue truck do not match the prompt. Swap

positions of the green car and blue truck to match the prompt, while keeping all coordinates and
dimensions within [0, 1].

13 Updated Objects: [(’green car #1’, [0.350, 0.369, 0.275, 0.207]), (’blue truck #1’, [0.027,
0.365, 0.272, 0.208]), (’red air balloon #1’, [0.086, 0.010, 0.189, 0.176]), (’bird #1’, [0.485,
0.054, 0.186, 0.130])]

14

15 - Example 3
16 User prompt: An oil painting of a pink dolphin jumping on the left of a steam boat on the sea
17 Current Objects: [(’steam boat #1’, [0.302, 0.293, 0.335, 0.194]), (’pink dolphin #1’, [0.027,

0.324, 0.246, 0.160]), (’blue dolphin #1’, [0.158, 0.454, 0.376, 0.290])]
18 Reasoning: The prompt mentions only one dolphin, but two are present. Thus, remove one dolphin to

match the prompt, ensuring all coordinates and dimensions stay within [0, 1].
19 Updated Objects: [(’steam boat #1’, [0.302, 0.293, 0.335, 0.194]), (’pink dolphin #1’, [0.027,

0.324, 0.246, 0.160])]
20

21 - Example 4
22 User prompt: An oil painting of a pink dolphin jumping on the left of a steam boat on the sea
23 Current Objects: [(’steam boat #1’, [0.302, 0.293, 0.335, 0.194]), (’dolphin #1’, [0.027, 0.324,

0.246, 0.160])]
24 Reasoning: The prompt specifies a pink dolphin, but there’s only a generic one. The attribute

needs to be changed.
25 Updated Objects: [(’steam boat #1’, [0.302, 0.293, 0.335, 0.194]), (’pink dolphin #1’, [0.027,

0.324, 0.246, 0.160])]
26

27 - Example 5
28 User prompt: A realistic photo of a scene with a brown bowl on the right and a gray dog on the left
29 Current Objects: [(’gray dog #1’, [0.186, 0.592, 0.449, 0.408]), (’brown bowl #1’, [0.376, 0.194,

0.624, 0.502])]
30 Reasoning: The leftmost coordinate (0.186) of the gray dog’s bounding box is positioned to the

left of the leftmost coordinate (0.376) of the brown bowl, while the rightmost coordinate (0.186 +
0.449) of the bounding box has not extended beyond the rightmost coordinate of the bowl. Thus, the
image aligns with the user’s prompt, requiring no further modifications.

31 Updated Objects: [(’gray dog #1’, [0.186, 0.592, 0.449, 0.408]), (’brown bowl #1’, [0.376, 0.194,
0.624, 0.502])]

Table 6. Self-correction in-context examples for the LLM controller.



1 ## Examples
2

3 - Example 1
4 User prompt: Move the green car to the right and make the blue truck larger in the image.
5 Current Objects: [(’green car #1’, [0.027, 0.365, 0.275, 0.207]), (’blue truck #1’, [0.350, 0.368,

0.272, 0.208])]
6 Reasoning: To move the green car rightward, its x-coordinate needs to be increased from 0.027. The

dimensions (height and width) of the blue truck must be enlarged. While adjusting bounding boxes,
ensure they do not overlap excessively. All other elements remain unchanged.

7 Updated Objects: [(’green car #1’, [0.327, 0.365, 0.275, 0.207]), (’blue truck #1’, [0.350, 0.369,
0.472, 0.408])]

8

9 - Example 2
10 User prompt: Swap the positions of a green car and a blue truck in this landscape scene with an

air balloon.
11 Current Output Objects: [(’green car #1’, [0.350, 0.369, 0.275, 0.207]), (’blue truck #1’, [0.027,

0.365, 0.272, 0.208]), (’red air balloon #1’, [0.086, 0.010, 0.189, 0.176])]
12 Reasoning: Exchange locations of the car and truck to align the bottom right part; other objects

remain unchanged.
13 Updated Objects: [(’green car #1’, [0.027, 0.365, 0.275, 0.207]), (’blue truck #1’, [0.350,

0.364, 0.272, 0.208]), (’red air balloon #1’, [0.086, 0.010, 0.189, 0.176])]
14

15 - Example 3
16 User prompt: Change the color of the dolphin from blue to pink in this oil painting of a dolphin

and a steamboat.
17 Current Objects: [(’steam boat #1’, [0.302, 0.293, 0.335, 0.194]), (’blue dolphin #1’, [0.027,

0.324, 0.246, 0.160])]
18 Reasoning: Alter only the dolphin’s color from blue to pink, without modifying other elements.
19 Updated Objects: [(’steam boat #1’, [0.302, 0.293, 0.335, 0.194]), (’pink dolphin #1’, [0.027,

0.324, 0.246, 0.160])]
20

21 - Example 4
22 User prompt: Remove the leftmost bowl in this photo with two bowls and a dog.
23 Current Objects: [(’dog #1’, [0.186, 0.592, 0.449, 0.408]), (’bowl #1’, [0.376, 0.194, 0.324,

0.324]), (’bowl #2’, [0.676, 0.494, 0.324, 0.324])]
24 Reasoning: There are two bowls in the image and bowl #1 is identified as the leftmost one because

its x coordinates (0.376) is smaller than that of bowl #2 (0.676).Thus, eliminate bowl #1 without
modifying any remaining instances.

25 Updated Objects: [(’dog #1’, [0.186, 0.592, 0.449, 0.408]), (’bowl #2’, [0.676, 0.494, 0.324,
0.324])]

26

27 - Example 5
28 User prompt: Add a pink bowl between two existing bowls in this photo.
29 Current Objects: [(’bowl #1’, [0.076, 0.494, 0.324, 0.324]), (’bowl #2’, [0.676, 0.494, 0.324,

0.324])]
30 Reasoning: There are two bowls in the existing image. To add a pink bowl between the two, the x

coordinates should be placed between 0.076 and 0.676 and the y coordinates should be between 0.494
and 0.494. When adding the object, be sure to prevent overlapping between existing objects and
make sure the [top-left x-coordinate, top-left y-coordinate, top-left x-coordinate+box width,
top-left y-coordinate+box height] lie between 0 and 1.

31 Updated Objects: [(’bowl #1’, [0.076, 0.494, 0.324, 0.324]), (’bowl #2’, [0.676, 0.494, 0.324,
0.324]), (’bowl #3’, [0.376, 0.494, 0.324, 0.324])]

Table 7. Image editing in-context examples for the LLM controller.
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