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1. More details about SportsHHI dataset
1.1. Full interaction vocabulary

We provide full interaction vocabulary of SportsHHI dataset
in Table 1. For comparison, we also provide the full rela-
tionship vocabulary of the popular AG dataset [4] for video
scene graph generation (VSGG) in Table 2. Our defined in-
teraction classes are of high-level semantics, including tech-
nical action, tactical coordination, or confrontation while
AG deals with low-level spatial relation or simple atomic
action. In video scene graph generation [9, 12, 13], the ap-
pearance features of the subject and object can often pro-
vide enough cues for relation inference [1, 5, 8, 11, 15, 16].
For example, given that the subject is a person and the ob-
ject is a clothes, it is highly possible the relation between
them is “wearing”. However, in human-human interaction
detection, the subject and object are both person. Such prior
information cannot be used for interaction recognition, and
generally, it requires action modeling, relative position en-
coding and spatiotemporal context modeling.

1.2. Statistics of each sport

We provide statistics of each sport in Table 3. The total
number of instances of basketball and volleyball is close.
Keyframe interaction instance distribution in basketball is
more sparse than in volleyball because basketball videos
have longer plain segments of dribbling. Both basket-
ball and volleyball share the characteristics of crowd multi-
person scenarios and relatively sparse interaction instance
distribution, which requires the methods to distinguish two
people without interaction from real interaction instances.

1.3. Statistics of partially invisible instances

For an interaction instance ⟨S, I,O⟩, when the subject per-
son or the object person is out of view, we annotate its S
or O as “invisible”. This occurs due to two main reasons:
camera angle switch and fast movement of the people. Ta-
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Basketball Volleyball

jump ball serve - first pass
pass - catch co- first pass
drive - defend first pass - second pass
block - shot first pass - second attack
interfere - shot co- attack
pass steal - pass second pass - attack
dribble steal - dribble cover attack
dribble - defend attack - block
dribble - sag co- block
defend - sag attack - protect
(with ball) pick-and-roll - defender co- protect
(with ball) pick-and-roll - teammate block back - protect
(no ball) pick-and-roll - defender protect - second pass
(no ball) pick-and-roll - teammate protect - second attack
pass inbound - catch attack - defend
close defense co- defend

defend - second pass
defend - second attack

Table 1. Interaction vocabulary of SportsHHI

attention spatial contact

looking at in front of carrying covered vy
not looking at behind drinking from eating
unsure on the side of leaning on holding

above have it on the back lying on
beneath not contacting sitting on
in standing on touching

twisting wearing
wiping writing on

Table 2. Relationship vocabulary of AG

ble 4 presents statistics of partially invisible interaction in-
stances. In basketball, all partially invisible instances are
from the interaction class of pass-catch. This is because
athletes move quickly during the transition between defense
and offense, and sometimes the camera cannot fully capture
the ”pass-catch” process. In volleyball, partially invisible
instances mainly occur in the interaction classes of serve-

1



Figure 1. Tube-level interaction instances. We generate tube-level interaction instances by linking the same pair of people with the same
interaction type across adjacent keyframes. The subjects are displayed in red and the objects in blue.

#keyframes #interact. #inst. #hum. bbox avg. hum.

Basketball 6791 16 22455 64549 9.51
Volleyball 4607 18 28194 53526 11.62
SportsHHI 11398 34 50649 118075 10.36

Table 3. Statistics of SportsHHI

interact. class #inv. ins. #ins. class % all %

pass - catch 9 1894 0.48 0.04
others 0 0 0 0

(a) Basketball

interact. class #inv. ins. #ins. class % all %

serve - first pass 13 225 5.78 0.05
co- first pass 52 1464 3.55 0.18
others 5 - - 0.02

(b) Volleyball

Table 4. Statistics of partially invisible instances. The table
displays the count and percentage of partially invisible instances
for each interaction class in the given sport. The percentage is
calculated based on the total number of instances in that class as
well as all instances in the sport.

first pass and co-first pass. This is because sometimes the
camera switches its focus from the serving player to cap-
turing the entire court during the serve. The percentage of
partially invisible instances is low because the high-level se-
mantics we focus on are often also the focus of the view and
can attract the camera’s attention the most.

1.4. Tube-level interaction instance generation

We annotate interaction instances on the keyframes at 5FPS.
Person id tracking is available, making it simple to create
tube-level interaction instances by linking the same pair of
individuals with the same interaction type across adjacent
keyframes. Temporal boundaries can be provided at a gran-
ularity of 5 frames. Figure 1 illustrates two tube-level inter-
action instances generated using this approach. Most exist-
ing video visual relation detection benchmarks and meth-
ods focus on frame-level instance detection. We follow
their lead and define interaction instances at the frame level.
However, our SportsHHI can be readily adapted to tube-
level video visual relation detection, which could poten-
tially become a new research trend in the future.

2. More discussion about the baseline method

2.1. Comparisons with current Video VRD methods

When designing the baseline method, we followed some
practices of the current video scene graph generation and
video human-object interaction detection methods, such as
relative position encoding. However, there are still three
major differences between current video visual relation de-
tection (Video VRD) methods [1, 5, 8, 11, 15, 16] and our
baseline method: 1) They rely on appearance features ex-
tracted by image object detector and overlook motion mod-
eling of the subject and object while we adopt 3D backbone
for better modeling of each person’s action. The seman-
tic level of relation classes defined by previous datasets is
relatively low and the appearance feature is often sufficient



Training Validation HHICls HHIDet
mAP R@150 R@100 R@50 R@20 mAP R@150 R@100 R@50 R@20

Basketball Basketball 3.21 95.10 90.28 66.42 25.21 0.99 77.40 67.36 46.92 17.63
Volleyball Volleyball 15.65 83.52 74.85 58.11 34.06 8.09 65.18 54.04 36.21 20.35
SportsHHI Basketball 3.52 94.94 91.44 78.16 52.97 1.39 79.80 71.35 53.35 29.22
SportsHHI Volleyball 15.82 84.23 75.41 59.05 34.00 7.65 65.52 53.61 34.29 18.25
SportsHHI SportsHHI 10.69 89.25 82.93 68.13 43.72 4.93 72.22 61.92 42.99 23.89

Table 5. HHICls and HHIDet results. We show the results of training the model on the basketball or volleyball part of the SportsHHI
training set and validating on the corresponding part of the validation set. We further show the results of training the model on the whole
training set and validating on the basketball part, volleyball part, and whole validation set. ViT-B backbone is used.

for recognition, such as ⟨dog, larger, frisbee⟩. However,
action modeling is very important for interaction recogni-
tion on SportsHHI. For example, to distinguish between de-
fend - second pass and defend - second attack, we need a
good modeling of the object person’s action to distinguish
whether he is passing the ball or attacking. When we re-
place the motion features in interaction representation with
appearance features, the performance drops significantly.
2) They are dependent on the accuracy of the image ob-
ject detector in identifying object categories. For example,
STTran [1] adds the category embedding of the subject and
object to the relation representation, which provides strong
prior information. For instance, knowing that the subject
and object are human and horse respectively, the relation
category is very likely to be ride. However, SportsHHI does
not have such a priori as all subjects and objects are humans.
3) Current Video VRD methods tend to treat different rela-
tion instances as independent individuals, while our base-
line method exchanges information among interaction in-
stances. In SportsHHI, sometimes, recognizing an interac-
tion requires information from other interaction instances.
For example, to recognize an interaction of co-defend in
volleyball, we need to know there exists an interaction of
attack-defend.

2.2. Comparisons with action detection methods

Current action detection methods [10, 14, 19, 21] typically
adopt the two-stage detection paradigm. Proposal person
bounding boxes are generated in the first stage and RoI
features are extracted for each proposal for action classi-
fication. Our baseline method for human-human interac-
tion detection follows the two-stage pipeline. Unlike action
detection methods, the RoI feature is insufficient for clas-
sification in the second stage. Experimental results show
that context information, relative position encoding, and in-
formation exchange among the proposals are necessary for
interaction recognition. Some methods model the interac-
tion between people through attention mechanisms to im-
prove the accuracy of action recognition of each individ-
ual person. However, the interaction modeling is implicitly
performed as no interaction annotation is provided for su-
pervision. The quality of interaction modeling can only be

indirectly evaluated through the accuracy of action classifi-
cation. In contrast, our baseline method deals with explicit
human-human interaction modeling and prediction. The
performance can be directly evaluated on the SportsHHI
dataset.

2.3. Comparisons with action recognition methods

Some methods for action recognition [18] or group action
recognition [2, 3, 17, 20] implicitly model the relations
among people or objects to improve the action classification
accuracy. For example, Wang et al. [18] adopt a GCN to im-
plicitly model relations among all people and objects in the
video. Each node in their GCN is the appearance feature of
a person or object and the nodes are connected according to
similarity and adjacency. By performing graph convolution
on the GCN, the information from all people and objects
is gradually aggregated, which benefits the classification of
the video. The goal of our baseline methods is different.
Our method aims to identify whether there is an interac-
tion between each pair of people and recognize the type of
interaction. We adopt a Transformer to exchange informa-
tion among interaction proposal representations to assist the
recognition of each single proposal rather than aggregate
global information for video-level classification.

3. More experimental results
HHICls and HHIDet results on each sport. In Table 5, we
show the results of HHICls and HHIDet on each sport. We
first show the result of training and validation on the bas-
ketball and volleyball parts of SportHHI respectively. Then
we show the results of training on SportsHHI and valida-
tion on basketball, volleyball, and both. Using ground-truth
human detection results, mAP and Recall of HHICls are
higher than HHIDet with a large margin, which indicates the
human detection results and the quality of interaction pro-
posals have a significant influence on performance. Over-
all, our baseline method performs better on volleyball than
basketball, because in basketball videos, the interaction pat-
terns are more complex, and the interaction categories are
more unbalanced. In the HHICls mode, compared with
training the model on the subset of each sport, training on
the whole training set of SportsHHI brings validation per-
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Figure 2. Error analysis tree. For each detected triplet d i from a sorted list by descending order of confidence score of class c, d i(s)
and d i(o) are the subject and object respectively. g(s) and g(o) are the subject and object for ground truth g. box IoU is the
traditional IoU score for a pair of boxes. triplet IoU is the minimum of box IoU between subject boxes and object boxes. GT(c) is
the set of ground truths of class c. dupGT(c) is the original copy of GT(c) and will not change during the error classification process.

formance improvements on both basketball and volleyball.
However, in the HHIDet mode, the improvement is not so
stable. We speculate that, in the HHICls mode, due to the
high quality of interaction proposals, through joint training,
the model can learn more general representations. How-
ever, in the HHDet mode, low-quality proposals already in-
troduce a lot of noise, and joint training further amplifies
the impact of noise.

4. More detailed error analysis
4.1. Error analysis tree

Following ACT [6] and MultiSports [7], we analyze error
types of the false positives in the predictions to better un-
derstand the inherent difficulty in HHIDet. As illustrated
in Figure 2, we classify the detection errors into 9 mutually
exclusive categories with a decision tree. A more detailed
description of each error type is listed below.
• ER (Errors of repeated detection): a detection result that

has a triplet IoU larger than a threshold and the right ac-
tion class with some ground truth triplet, but the ground
truth triplet has already been matched by a detection re-
sult with a larger confidence score.

• EC (Errors of classification): a detection result that has
the triplet IoU larger than a threshold with a ground truth,

but its interaction class is not the same with the ground
truth.

• EO (Errors of object localization): a detection result that
has the same interaction class as a ground truth and the
box IoU between the corresponding subject boxes are ac-
ceptable, but the box IoU between the object boxes are
low.

• ES(Errors of subject localization): a detection result that
has the same interaction class as a ground truth and the
box IoU between the corresponding object boxes are ac-
ceptable, but the box IoU between the subject boxes are
low.

• ES&O (Errors of subject and object localization): a detec-
tion result that has the same interaction class as a ground
truth, but neither the object box IoU nor the subject box
IoU meets the threshold.

• EO&C (Errors of object localization and interaction clas-
sification): a detection result that has acceptable subject
box IoU, but the object box IoU is low and the interaction
class is incorrect.

• ES&C (Errors of subject localization and interaction clas-
sification) a detection result that has acceptable object box
IoU, but the subject box IoU is low and the interaction
class is incorrect.

• ES&O&C (Errors of subject localization, object localiza-



Figure 3. Visualization of typical errors for HHIDet on SportsHHI. The subject person of a ground-truth or predicted interaction
instance is marked in red and the object person is marked in blue. The ground-truth or correctly predicted interaction class labels are
displayed in green and wrongly predicted in red.

(a) Basketball (b) Volleyball

Figure 4. Confusion matrix of HHICls results on each sport



tion and interaction classification): a detection result that
has low subject box IoU, low object box IoU and the in-
teraction class is incorrect.

• EN (Errors of not matched): a detection result that has no
overlap with any ground truth triplets of any class, indi-
cating there should be no interaction detection results.

4.2. Visualization of error analysis

We provide visualizations of false positives of some error
types in Figure 3 to show the challenge of human-human
interaction detection on SportsHHI more intuitively.

4.3. Confusion Matrix

We draw the confusion matrix of HHICls predictions in Fig-
ure 4. We observe that the model generally performs bet-
ter on volleyball classes than on basketball classes. This is
because the interaction patterns are more complicated and
the number of instances of each class is more unevenly dis-
tributed in basketball. From Figure 4, we observe the chal-
lenges of SportsHHI in the following three aspects.
1. Handling long-tail distribution. In basketball data for

example, classes like sag or pick-and-roll have only a
small number of instances while close defense is very
common. The optimization of the interaction classi-
fication network will be biased towards the dominant
classes. However, the long-tail distribution is natural and
inevitable in real-world data and how to catch the rare in-
teractions remains a difficult yet important problem.

2. Action modeling. Confusion between volleyball classes
defend - second pass and defend - second attack in-
dicates the importance of the action modeling of each
person in SportsHHI. To distinguish between these two
classes, we need to accurately identify whether the ob-
ject person’s action is “pass” or “attack”. Former video
visual relation detection datasets do not emphasize mod-
eling human actions, so the current methods only used
appearance features, which is not sufficient for interac-
tion recognition on SportsHHI.

3. Long-term temporal structure modeling. As a base-
line model, we only leverage spatiotemporal context
with a short video clip for neatness and simplicity. How-
ever, in order to distinguish between classes like protect
- second pass and defend - second pass, we need longer
temporal information to distinguish whether the ball is
defended or protected.
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