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Supplementary Material

In this appendix, we first detail the construction of the three
datasets used in the experiments (Section 1), then provide
additional implementation details (Section 2), ablation ex-
periments (Section 3), and qualitative results (Section 4).

1. Details on Dataset Construction

1.1. GoogleMaps

While this paper focuses on non-bijective translation, the
official GoogleMaps dataset was introduced in CycleGAN
[13] for bijective translation between serial photos and maps.
Consequently, we propose a protocol to create controllable
non-bijectivity in this dataset.

We select the “highway” class for its prevalence and its
distinctiveness on maps: they are always represented by
the same orange hue. This allows us to easily detect high-
ways on maps by thresholding in color space: a pixel is a
highway if all color channels are closer than 20 units from
(240, 160, 30). In total, 356 image/map pairs of the train set
of the GoogleMaps contain highways, and 740 do not.

For the training set, the source domain is always defined
as 548 aerial images that do not contain highways. We
define different versions of the target domain for the test
set by fixing the ratio of maps that contains highways, from
0% to 60%, for a fixed total of 548 images. The test set is
composed of 899 pairs of aligned aerial photos and maps
that do not contain the highways class from the test set of
the GoogleMaps dataset.

1.2. Brats MRI

We adapt the protocol of Cohen et al. [3] from the Brats2013
datasets [11] to the more recent, larger, and more diverse
Brats2018 dataset [2]. We consider two MRI modalities: na-
tive (T1) and Fluid Attenuated Inversion Recovery (FLAIR).
We selected transverse slices from the 60◦ to 100◦ range in
the caudocranial direction [1] for both modalities of scans.

We label each scan as tumorous if more than 1% of its
pixels are labelled as such, and as healthy if it contains
no tumor pixels. We only use high-grade gliomas (HGG)
instead of low-grade gliomas (LGG) as the are more easily
observable [10]. In total, we obtain 5035 pathological pairs
and 1135 healthy pairs. The train set is composed of a source
domain of 800 T1 images of healthy brains, while the target
domain set is composed of FLAIR scans of which 480 (60%)
are tumorous and 320 healthy. The test set is composed of
335 aligned scans of healthy brains in both modalities.

Figure A-1. Spatial Distribution of Samples in PlanIGN.

1.3. PlanIGN

We construct the PlanIGN dataset from two open-access
sources available on the French governmental geoportal:
aerial orthophotos and Plan IGN cartographic product, both
projected in RGF93-Lambert-93. As the maps are derived
directly from the orthophotos, we ensure the precise spatial
alignment between both modalities.

Sampling. We consider aligned image/map pairs of resolu-
tion 256×256 at a scale of 1:12500 and a graphics resolution
of 96 dpi, corresponding to a ground sampling distance of
3.3m per pixel. We randomly select samples across the
French territory with a 3km buffer between images. We re-
moved images that were blurry, with significant radiometric
aberrations, over sensitive areas, or for which the roads were
significantly occluded. In total, we sample 1900 such pairs,
whose spatial distribution is shown in Figure A-1, and whose
semantic distribution is given in Figure A-2.

Processing. We apply the following processing to the maps
to make them easier to translate:

• We remove underground objects and small paths.

https://www.geoportail.gouv.fr/
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Figure A-2. Semantic Distribution in PlanIGN.

• We homogenize the palette: we use the same color for all
roads except highways, and for buildings and hydrology.

• We optionally add the toponyms to the maps. When we do,
we also compute a toponym mask by applying a 4-pixel
dilation to the binary difference between the map with and
without toponyms.

Dataset. The training set is composed of 1000 orthophotos
for the source domain and 1000 maps with toponyms for the
target domain. The test set is composed of 900 aligned pairs
of orthophotos and maps without toponyms.

2. Additional Implementation Details

We follow the same architecture and hyperparameters as
CycleGAN, including the ResNet-based generator [5] with 9
residual blocks, PatchGAN discriminator [6], and weights in
th loss. We train our model for 200 epochs with a learning
rate of 0.002 and the ADAM optimizer [8].

The hyperparameters for each dataset are given in Ta-
ble A-1. Most methods use similar hyperparameters with
two exceptions:
• Due to the high heterogeneity and noisiness of scans across

different MRI machines, we use a larger batch size of 12.
• We observed better unmatchability masks with shallower

encoders for PlanIGN, whereas it was the contrary for
other datasets. Section 4.4 has pointed out that shallower
encoder seems more influenced by the variation in appear-
ance. Despite that class like hydrology exits both in the
source and target domain, variations in colors or occlu-
sions by vegetation occurring often in the aerial images
challenge the model to establish correct correspondences.
This should also be empirically regarded as mismatch,
which shallower encoder performs better to capture.

Table A-1. Hyperparameters. We report the value for different
parameters across the datasets used in the experiments.

Dataset λreg Encoder Depth Batch Size λmatch

GoogleMaps 0.3 8 1 1
PlanIGN 0.25 1 1 1

Brats 0.3 8 12 1

Table A-2. Impact of λreg. We report the performance on the
GoogleMaps dataset of our method for different values of regu-
larization strength. Values between 0.3 and 0.5 give good results,
while the performance rapidly decreases above 0.6.

Lreg RMSE↓ Acc(σ1)↑ Acc(σ2)↑ pFPR(‱)↓ iFPR↓ FID↓ KID↓
0.1 26.1 11.0 60.4 0.1 7.7 254.4 25.8
0.2 23.3 36.5 64.0 0.0 0.0 141.2 17.4
0.3 22.7 41.7 67.1 0.0 0.0 77.3 6.8
0.4 23.5 41.8 65.7 0.0 0.2 84.8 8.3
0.5 24.4 39.5 64.6 0.0 1.1 86.1 8.1
0.6 25.2 40.0 64.8 19.1 16.8 103.5 11.3
0.7 25.7 36.8 62.7 18.8 22.2 110.1 11.3

3. Additional Ablation Study

The hyperparameter λreg is crucial as it enforces the sparsity
of the unmatchability masks. We report its impact in Table A-
2. Too small values may lead to a too-liberal use of the
unmatchability masks, resulting in a loss of details in the
clean generation. Too large values will prevent our model
from using the unmatchability masks altogether.

4. Additional Qualitative Results

We provide additional results for GoogleMaps in Figure A-3,
PlanIGN in Figure A-4 and Brats MRI in Figure A-5.

Application to Natural Images. We apply our method to
natural image datasets; see Fig. A-6. StegoGAN performs
well in this setting and generates faithful yet realistic im-
ages. Compared to CycleGAN, the clean translation yclean

gen
produces fewer unmatchable features like snow or color
shifts (Summer 7→ Winter example), or internal structures
of fruits (Apple 7→ Orange example). However, since such
features often contribute to the realism and visual appeal of
the translated images. Therefore, our method is better suited
for domains that value reliability over aesthetics, such as
medical images or cartography.



Source Ground Truth StegoGAN CycleGAN [13] DRIT [9] GcGAN [4] CUT [12] SRUNIT [7]

Figure A-3. Additional qualitative comparison on Google Photo→Map.
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Figure A-4. Additional qualitative comparison on PlanIGN.

References
[1] Simon Andermatt, Antal Horváth, Simon Pezold, and
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Figure A-5. Additional qualitative comparison on Brats.
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