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A. Experimental Details
In this section, we provide the details of experiments performed in the main paper, including datasets used in experiments,
implementation details and hyperparameter selection.

A.1. Datasets

We present detailed information on datasets used in the paper in Table 1.

A.2. Implementation Details

We utilized a multi-layer perceptron (MLP) architecture with a total of 8 fully connected layers as the non-linear part of the
probing model. The hidden dimensions of all layers are set to 128. ReLU is used as activate function. Additionally, residual
connections are integrated every two layers.

Further analyses on the probing model size are presented in Section C.4, where we demonstrate that the findings made
in the main paper are maintained across various probing model sizes. In addition, our proposed decoupled loss function is
analyzed in Section C.7 to exhibit its effectiveness compared to the traditional cross-entropy loss.

A.3. Hyperparameter Selection

Hyperparameters for SMP. For the hyperparameters involved during the training phase, we set the batch size to 128, the
learning rate to 0.001, and training steps from (500, 5000, 10000). Cosine learning rate annealing schedule is employed.
SMP introduces two extra hyperparameters, the aggregated feature size and the regularization strength λ1. There are two
types of feature aggregation: aggregating along the token dimension (to preserve channel information) and aggregating along
the channel dimension (to maintain spatial information). We apply 1D average pooling as the aggregating function and
choose the aggregated feature size (token-wise size, channel-wise size) from ((768, 0), (768, 197), (768, 1970)). We select the
regularization strength λ1 from (5, 0.05). For other parameters, we simply set λ2 = 0.1, M1 = 2, M2 = 1 for all experiments,
which yields satisfactory performance since the strength of structured non-linearity regularizer is mainly depended on the
norm of selected structures. We perform 5-fold cross validation to select these hyperparameters and provide the details of the
hyperparameters used for each dataset in Table 1.

It is common for tuning or probing methods to require the extra hyperparameter selection on the validation set. For example,
VPT [12] needs to select the token length and position. Head2Toe [6] requires the selection of the regularization coefficient,
target feature size, and the fraction of retained features. SMP does not introduce more hyperparameters compared to these
methods. As SMP only requires a single forward propagation on the pre-trained model to extract features, it is much faster
than tuning-based methods when performing hyperparameter selection.
Hyperparameters for compared methods. We carefully select hyperparameters for compared methods. For Fine-tuning,
we use AdamW as the optimizer and search learning rate from {5e-2, 1e-2, 5e-3, 1e-3, 5e-4, 1e-4, 5e-5, 1e-5} and weight
decay from {1e-2, 1e-3, 1e-4, 0}. For VPT, we use SGD as the optimizer and follow the recommended regime of original
paper [12], searching learning rate from {50, 25, 10, 5, 2.5, 1, 0.5, 0.25, 0.1, 0.05}, searching weight decay as fine-tuning,
searching prompt tokens from {1, 5, 10, 50, 100, 200}. For Head2Toe [6], we choose the learning rate from {0.1, 0.01} and
training steps from {500, 5000}, and search regularization coefficient from{0.001, 0.000001}, target feature sizes from {768,
15360, 32448} and the fraction of retained features from {0.0005, 0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1}, following the
recommended regime in the paper. All results are from the best epoch selected by the validation set.



Table 1. Detailed information and selected hyperparameters on evaluated datasets.

Dataset # Classes Train Val Test Steps Aggregated Size λ1

Visual Task Adaptation Benchmark (VTAB-1k [27])

CIFAR-100 [17] 100

800/1000 200

10,000 5,000 (768, 197) 5
Caltech101 [7] 102 6,084 5,000 (768, 197) 0.05
DTD [4] 47 1,880 5,000 (768, 197) 5
Flowers102 [21] 102 6,149 5,000 (768, 197) 0.05
Pets [22] 37 3,669 5,000 (768, 197) 5
SVHN [20] 10 26,032 5,000 (768, 1970) 5
Sun397 [26] 397 21,750 5,000 (768, 197) 5

Patch Camelyon [24] 2

800/1000 200

32,768 500 (768, 197) 5
EuroSAT [9] 10 5,400 5,000 (768, 197) 5
Resisc45 [3] 45 6,300 5,000 (768, 197) 0.05
Retinopathy [14] 5 42,670 500 (768, 197) 0.05

Clevr/count [13] 8

800/1000 200

15,000 5,000 (768, 0) 5
Clevr/distance [13] 6 15,000 5,000 (768, 197) 5
DMLab [1] 6 22,735 5,000 (768, 197) 5
KITTI/distance [8] 4 711 5,000 (768, 197) 5
dSprites/location [19] 16 73,728 5,000 (768, 197) 0.05
dSprites/orientation [19] 16 73,728 5,000 (768, 0) 0.05
SmallNORB/azimuth [18] 18 12,150 5,000 (768, 1970) 5
SmallNORB/elevation [18] 9 12,150 5,000 (768, 197) 0.05

Few-shot learning tasks

Food101 [2] 101

1/2/4/8/16
(per class)

20,200 30,300

5,000 (768, 197) 5
CUB-200-2011 [25] 200 600 5,794
Oxford Pets [22] 37 736 3,669
Stanford Dogs [15] 120 1,200 8,580
Stanford Cars [16] 196 815 8,041

Full-size downstream tasks

CUB-200-2011 [25] 200 5,394 600 5,794

10,000 (768,197)

5
Flowers102 [21] 102 1,020 1,020 6,149 0.05
Oxford Pets [22] 37 2,575 1,105 3,669 0.05
Stanford Dogs [15] 120 10,800 1,200 8,580 5
Stanford Cars [16] 196 7,329 815 8,041 0.05
NABirds [10] 555 21,536 2,393 24,633 5
Food101 [2] 101 75,750 / 25,250 5
DTD [4] 47 1,880 1,880 1,880 5
Magnetic [11] 6 938 / 406 0.05



B. Experiments on More Transfer Scenarios
In this section, we present full results of experiments on more transfer scenarios, including performance on larger downstream
datasets, different pre-trained models, and different architecture.

B.1. Performance on Larger Downstream Datasets

We evaluate our method on 9 full-size downstream datasets, including CUB-200-2011 [25], Flowers102 [21], Oxford Pets [22],
Stanford Dogs [15], Stanford Cars [16], NABirds [10], Food101 [2], DTD [4], and Magnetic [11]. The results are presented in
Table 2, and suggest that even in the larger data regime, SMP still achieves superior or competitive performance compared to
tuning methods in most cases. It can be observed that probing-based methods perform worse than tuning-based methods on
Stanford Cars, which is a fine-grained classification dataset. This indicates there is room for improvement for the dataset that
has low inter-class variance. However, even in this case, SMP improves the accuracy by 25.9% with respect to Linear. Overall,
the competitive performance of SMP on full-size downstream datasets suggests that it can be a strong alternative to tuning
methods.

B.2. Performance on Different Pre-trained Models

To verify the effectiveness of SMP on different pre-trained models, we conduct VTAB-1k experiments on various models,
i.e., ViT-B/16 and ViT-L/14, which are pre-trained via CLIP method [23]. The results are presented in Table 3. As the results
indicate, the employment of stronger pre-trained model results in better performance of SMP, and using larger models further
boosts its performance. Across the three data groups, SMP consistently outperforms Fine-tuning, Linear and Head2Toe.
While VPT performs better than SMP on the Natural group, SMP outperforms VPT significantly on the Structured group.
By using more detailed hyperparameter selection such as exploring more aggregated feature sizes and varying regularization
strength, the performance of SMP on the Natural group can be further improved. However, here we simply maintain the
similar hyperparameter searching regime as the main paper. Overall, despite the usage of stronger pre-trained models, SMP
continuously outperforms compared methods in terms of mean accuracy, owing to the incorporation of diverse features and
non-linear transformation, as well as its flexible framework.

B.3. Performance on Different Architecture

Our proposed SMP method is versatile and can be applied not only to vision transformers but also to convolutional neural
networks. In the case of convolutional neural networks, the features are extracted from each layer and then aggregated by 2D
average pooling. We perform experiments on ImageNet pre-trained ResNet-50, and present the results in Table 3. It is evident
from the results that SMP outperforms other methods on pre-trained convolutional neural networks and achieves the highest
mean accuracy across all three data groups. This suggests that SMP is effective for convolutional neural networks as well.

Table 2. Test accuracy (%) on 9 full-size downstream datasets. Bold represents the best results and underline represents the 2nd best results.

CUB-200-2011 Flowers102 Oxford Pets Stanford Dogs Stanford Cars NABirds Food101 DTD Magnetic Average

Fine-tuning 87.3 98.8 92.9 89.4 84.5 82.7 89.9 72.2 98.0 88.4
VPT 88.5 99.0 93.5 90.2 83.6 84.2 88.8 74.2 96.5 88.7

Linear 85.3 97.9 92.0 86.2 51.3 75.9 87.2 66.5 93.4 81.7
SMP 89.2 99.4 93.9 92.1 77.2 81.1 88.9 79.5 97.3 88.7



Table 3. Test accuracy (%) on the VTAB-1k benchmark using different pre-trained models. ∗ indicates results are obtained from [12] and †

indicates results are obtained from [6].
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ViT-B/16 (CLIP pre-trained)

Tuning Methods
Fine-tuning 43.1 84.4 62.1 84.7 74.6 90.4 35.5 67.8 74.4 95.6 80.0 73.6 80.9 60.1 57.5 45.3 56.4 62.6 25.7 30.2 27.6 45.7 61.2
VPT 70.7 92.5 75.5 95.5 89.8 91.4 54.0 81.4 77.9 94.4 88.9 74.6 84.0 76.5 61.2 40.8 79.8 85.0 41.1 31.7 39.7 57.0 71.6

Probing Methods
Linear 64.0 90.5 73.4 95.6 86.2 57.1 53.9 74.4 81.1 92.6 87.3 74.1 83.8 50.2 41.1 40.6 63.6 32.0 41.5 15.7 29.7 39.3 61.6
Head2Toe 63.2 90.2 77.6 94.6 79.2 77.8 49.2 76.0 81.1 93.1 87.7 74.9 84.2 54.0 59.2 42.8 78.2 50.6 49.7 25.0 43.0 50.3 66.9

SMP 62.9 91.6 78.5 95.3 86.9 74.8 49.9 77.2 81.2 95.8 88.1 72.0 84.3 84.1 63.0 42.7 74.8 76.2 51.2 37.1 54.6 60.5 71.6

ViT-L/14 (CLIP pre-trained)

Tuning Methods
Fine-tuning 55.6 88.3 64.2 90.5 81.9 92.6 37.5 72.9 87.4 95.8 86.4 73.6 85.8 74.8 58.9 52.8 81.3 69.0 23.8 24.2 31.6 52.0 66.9
VPT 80.7 94.3 79.8 98.6 94.1 94.1 59.7 85.9 83.2 95.5 92.7 76.3 86.9 62.1 60.7 34.1 66.1 84.8 50.2 25.0 33.6 52.1 71.9

Probing Methods
Linear 72.4 92.8 78.9 98.2 91.0 64.4 55.6 79.0 82.2 95.3 91.2 74.5 85.8 51.6 44.2 42.2 63.7 30.8 45.1 14.2 28.6 40.1 64.1
Head2Toe 71.9 92.6 79.5 97.7 84.5 78.9 52.4 79.7 83.2 96.9 91.4 74.5 86.5 54.5 52.9 45.3 75.8 49.0 54.3 27.0 41.4 50.0 68.6

SMP 72.0 93.5 80.5 98.3 91.3 83.8 55.3 82.1 83.1 97.0 91.3 74.4 86.5 89.4 63.5 45.5 75.7 75.7 52.2 35.5 53.2 61.3 74.3

ResNet-50 (ImageNet-1k pre-trained)

Tuning Methods
Scratch† 11.0 37.7 23.0 40.2 13.3 59.3 3.9 26.9 73.5 84.8 41.6 63.1 65.8 38.5 54.8 35.8 36.9 87.9 37.3 20.9 36.9 43.6 42.1
Fine-tuning† 33.2 84.6 54.5 85.2 79.1 87.8 16.6 63.0 82.0 92.5 73.3 73.5 80.3 54.6 63.7 46.3 72.1 94.8 47.1 35.0 33.3 55.9 63.6
VPT∗ 49.5 87.7 63.4 80.9 88.3 60.3 33.7 66.3 72.5 90.4 72.8 73.6 77.3 39.9 51.4 36.3 62.5 43.2 23.2 17.0 26.8 37.5 56.5

Probing Methods
Linear† 48.5 86.0 67.8 84.8 87.4 47.5 34.4 65.2 83.2 92.4 73.3 73.6 80.6 39.7 39.9 36.0 66.4 40.4 37.0 19.6 25.5 38.1 57.0
Head2Toe† 47.1 88.8 67.6 85.6 87.6 84.1 32.9 70.5 82.1 94.3 76.0 74.1 81.6 55.3 59.5 43.9 72.3 64.9 51.1 39.6 43.1 53.7 65.8

SMP 84.7 85.1 69.2 86.0 86.8 79.6 34.9 75.2 82.4 94.5 76.5 74.3 82.0 82.5 63.9 40.0 66.9 80.9 47.3 37.6 47.9 58.4 69.5



C. Extended Analysis
In this section, we present further analyses to provide a more comprehensive understanding of the proposed method.

C.1. Informativeness of Extracted Features

Figure 1 demonstrates the informativeness of the extracted features on the VTAB-1k benchmark, ordered from easy to difficult,
according to the domain similarity defined in the main paper. The results indicate that, for easier tasks, deeper layers of the
pre-trained model yield more informative features. This observation justifies the superior performance of linear probing for
easy tasks. However, for the more difficult tasks, the informativeness of features is uniform across various layers. Thus,
it is inadequate to rely only on features from the final layer for adapting to difficult tasks, as it fails to capture the diverse
information contained in the intermediate layers. Consequently, incorporating additional features into the probing model
becomes crucial for difficult tasks.

C.2. Visualization of Group Norms

In Figure 2, we show the norm of each structure group obtained from the weight matrix of the linear classifier, which is
regularized by structured sparsity regularizer. The results validate the observation of the informativeness of extracted features.
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Figure 1. Informativeness of features extracted from different layers. Datasets are ordered from easy tasks (left) to difficult tasks (right)
according to domain similarity.
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Figure 2. `2 norm of each structure. Datasets are ordered from easy tasks (left) to difficult tasks (right) according to domain similarity.

For easy tasks, only deeper layers contain useful information, thus structures from these layers exhibit non-zero norms. As for
difficult tasks, the information contained in intermediate layers is also crucial, and the norms of these structure groups are
similar, resulting in larger average norms. This further verifies our idea of structured non-linearity regularizer. In particular, for
tasks with a few selected features, the regularizer induces strong regularization effects, resulting in a mostly linear model. On
the other hand, for tasks that require diverse features, the regularizer produces a more complex model to be more non-linear.
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Figure 3. Retraining performance by gradually incorporating structures with larger `2 norm obtained by SMP. Datasets are ordered from
easy tasks (left) to difficult tasks (right) according to domain similarity.

C.3. Retraining Probing Model

We present the complete results of gradually incorporating selected features in a retrained probing model in Figure 3. The
structures are selected by their `2 norms. During the retraining stage, we control the non-linearity of probing model through
validation set, and choose the best probing model, to verify the effect of varying selected structure numbers. The results further
confirm our motivation. For easy tasks, there are redundant features that could lead to overfitting, and a few selected features
are sufficient to achieve satisfactory performance; incorporating more features results in performance degradation. In contrast,
difficult tasks require diverse features extracted from different layers, and incorporating more features consistently shows
performance improvement. This validates the efficacy of the proposed structured sparsity regularizer: in general, SMP can
perform embedded structure selection and obtain high performance without retraining a probing model.

C.4. Impact of Different Probing Model Sizes

We investigate the effect of changing the size of probing model. We vary the probing model size by changing the hidden layers
of the MLP, and using MLP with all extracted features as probing model (like MLPStruc. in the main paper). The results are
presented in Table 4. It can be verified that with different sizes of the probing model, the trends are still consistent with our
observation in the main paper: on easy tasks, the non-linear MLP model yields worse performance compared with linear



Table 4. Performance analyses on the VTAB-1k benchmark using ViT/B-16 pretrained on ImageNet-21k.
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Impact of Different Probing Model Sizes

LinearStruc. 72.9 89.5 72.5 98.9 83.6 71.6 42.7 76.0 84.3 96.0 81.8 75.0 84.3 48.2 52.5 39.4 66.7 48.7 36.7 32.3 37.7 45.3 64.8
MLPStruc. (MLP-2) 69.7 88.9 70.7 98.6 83.2 70.5 34.6 73.8 84.0 95.6 76.3 74.2 82.5 59.1 52.8 39.5 60.9 51.1 41.3 31.9 37.6 46.8 64.2
MLPStruc. (MLP-4) 69.5 88.5 70.0 98.0 84.3 70.4 32.8 73.3 83.0 95.5 72.4 73.4 81.1 73.0 54.1 40.2 42.8 65.3 42.8 32.1 40.8 48.9 64.7
MLPStruc. 66.8 88.7 70.3 97.4 82.1 71.1 33.3 72.8 81.6 95.9 77.0 73.5 82.0 77.2 57.7 39.3 66.5 72.3 44.1 32.7 47.7 54.7 67.1

Impact of Feature Aggregation Designs

SMP (token-wise) 79.2 90.8 74.7 99.3 90.2 55.4 55.4 77.9 83.9 96.4 83.2 75.2 84.7 77.8 57.9 40.1 67.7 62.5 43.1 23.6 47.5 52.5 68.6
SMP (channel-wise) 24.1 65.0 29.2 58.1 30.3 58.7 11.8 39.6 72.9 76.5 39.5 72.1 65.2 37.1 51.5 32.5 53.7 72.0 23.5 28.6 39.3 42.3 46.1
SMP (both) 79.3 90.9 74.9 99.3 90.4 60.1 55.3 78.6 84.8 96.3 83.1 75.0 85.1 74.1 58.0 40.8 67.5 72.5 35.3 27.2 49.0 53.5 69.4

Impact of Different Structures

SMP w/o Pre Attn 79.5 91.2 74.5 99.3 90.1 73.1 54.7 80.3 84.0 96.3 82.7 74.5 84.4 77.6 56.5 40.0 66.9 72.3 42.4 32.9 48.5 54.6 70.4
SMP w/o Attn 78.1 90.7 74.5 99.1 89.7 72.9 54.2 79.9 83.9 96.3 81.8 74.7 84.1 78.3 57.1 36.3 65.0 70.4 39.5 33.7 48.8 53.6 69.7
SMP w/o FFN 78.4 90.3 74.4 99.2 90.1 74.0 54.4 80.1 84.1 96.4 83.1 75.0 84.7 78.0 54.2 40.5 68.6 73.5 43.7 32.2 49.5 55.0 70.5

Impact of Loss Function

SMP w/ CE 69.5 91.2 72.0 99.5 87.1 74.6 38.8 76.1 84.4 96.1 82.3 73.4 84.0 57.8 52.2 39.8 64.4 69.7 40.7 32.7 45.4 50.4 66.9

SMP 79.3 90.9 74.9 99.3 90.4 75.0 55.3 80.7 84.8 96.3 83.1 75.0 84.8 77.5 58.0 40.8 67.5 72.5 44.5 33.0 49.0 55.4 70.9

model; while on difficult tasks, the non-linear model has better performance. We can also observe that the performance
degradation of simple MLP models on easy tasks is less than complex MLP models. However, the simple MLP models achieve
less performance improvement on difficult tasks. Our proposed structured non-linearity regularizer enables us to leverage a
complicated probing model without worrying about performance degradation.

C.5. Impact of Feature Aggregation Designs

The main goal of performing feature aggregation is to maintain the diversity in aggregated features while minimizing the
redundancy in raw features. In this section, we conduct ablation studies on feature aggregation designs adopted in SMP, to
validate their impact on different datasets. The results are presented in Table 4. Token-wise refers to performing 1D average
pooling through the token dimension, aiming to preserve channel information, and resulting in 768-dimensional features.
Channel-wise represents performing 1D average pooling through the channel dimension, intending to retain spatial information,
thereby generating 197-dimensional features. Both means performing 1D average pooling through both dimensions, and
concatenating the aggregated 768- and 197-dimensional features.

Generally, we find that channel information (token-wise aggregation) is important for all datasets. While for datasets that
are sensitive to spatial location, such as SVHN, dSpr-Loc, and sNORB-Azim, it is crucial to incorporate spatial information
(channel-wise aggregation), to further boost the performance. However, this degrades the performance on Clevr-Count
and dSpr-Ori. This may be because these extra location-based features lead to overfitting on these datasets. Therefore, we
determine the aggregated feature size through the validation set.

C.6. Impact of Different Structures

To enhance the diversity of features, we integrate features extracted from various structures of the transformer blocks, including
features before self-attention, features after self-attention, and features after Feed Forward Network (FFN). Despite these
structures are located in nearby positions, they still contribute to the diversity of features since these features are generated by
different parameters. Our designed structured sparsity regularizer allows us to conduct model fitting and feature selection
simultaneously, thereby obviating the need for the costly manual selection of candidate structures. We present a thorough



Table 5. Domain similarity measurements on the VTAB-1k benchmark using ViT/B-16 pretrained on ImageNet-21k.
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Domain Similarity 69.6 67.7 53.5 69.5 82.1 16.3 54.3 7.4 18.6 42.9 1.7 -0.6 -22.6 8.0 15.8 -54.4 -2.0 2.7 -0.4
Label-Feature Correlation (×10−2) 47.7 71.9 37.5 66.6 61.0 2.4 46.3 11.4 37.1 26.1 2.7 4.5 4.7 5.1 23.1 0.9 3.5 4.2 4.5

ablation study on different structures in Table 4. The results demonstrate that incorporating all structures yields the best mean
results, since our flexible framework automatically selects the most suitable candidate structures via structured regularization.

C.7. Impact of Loss Function

We propose a decoupled cross-entropy loss by decomposing the loss function into two components, as shown in Eq.(9) of the
main paper. We apply gradient stop on the linear part of the second component because our model, f(x) = θ>x+ fW (x),
consists of both a linear and a non-linear part. Directly employing cross-entropy loss on the output of the model may cause
the structured sparsity regularizer to lose its effectiveness in controlling the complexity of ‖θ‖, under the influence of the
non-linear part. We present the experimental results of using single cross-entropy loss on the output of the model in Table 4
(represented as w/ CE). The results show that performance degradation occurs without the proposed decoupled loss, thereby
validating the effectiveness of our design.

C.8. Label-Feature Correlation as Domain Similarity Measure

Except for the domain similarity defined as Eq.(1) in the main paper, we also utilize label-feature correlation (LFC) proposed
in [5] as domain similarity measure:

LFC =
(KX − µX) · (KY − µY )

‖KX − µX‖2‖KY − µK‖2
(1)

where X represents feature matrix, Y represents labels, KX ∈ RN×N is the feature similarity matrix, KY ∈ RN×N is the
label similarity matrix where (KY )i,j = 1 if yi equals yj , and −1 otherwise. µX denotes the mean of the entries of KX and
µY represents the mean of KY . We calculate LFC on the VTAB-1k benchmark using ViT/B-16 pre-trained on ImageNet-21k,
and report the results in Table 5. LFC exhibits a high Spearman rank correlation coefficient (0.854) with the domain similarity
score adopted in the main paper, showing the high correlation between these two measures.
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