
Supplementary Material:
TASeg: Temporal Aggregation Network for LiDAR Semantic Segmentation

Here we provide more experimental results, discussions
and details to validate the effectiveness of our method. An
overview of this supplementary material is as follows:

• Section A: Additional Ablations
– A.1 Performance on Different Distances
– A.2 Class-wise IoU Scores
– A.3 Ablation on Mask Distillation
– A.4 Ablation on Feature Gathering Strategy
– A.5 Ablation on Fusion Strategy
– A.6 Ablation on SMSA

• Section B: Additional Discussions
– B.1 Visualization of FSA
– B.2 Visualization of TIAF
– B.3 Imbalance of Static and Moving Samples

• Section C: Additional Details
– C.1 Static-to-Moving in SMSA
– C.2 Architecture of Image Branch

• Section D: Qualitative Results

• Section E: Leaderboard Screenshot

A. Additional Ablations

A.1. Performance on Different Distances

Here we investigate the performance of our approach on dif-
ferent distances, as summarized in Table 1. Results show
that our TASeg consistently outperforms the strong baseline
on different distances, demonstrating the effectiveness of
our approach. The table also suggests that TASeg achieves
more improvement on distant areas, which confirms the im-
portance of temporal and multi-modal information.

A.2. Class-wise IoU Scores

To verify the performance of our TASeg on different
classes, we provide class-wise IoU scores comparison, as
shown in Table 3. The table shows that our approach can
achieve consistent improvement on different classes. In par-
ticular, TASeg achieves the most improvement on small or
difficult classes, such as bicycles, motorcycles, parking and

Distance(m) 0 ∼ 10 10 ∼ 20 20 ∼ 30 30 ∼ 40 40 ∼ 50 50 ∼ ∞
Baseline 69.6 68.1 64.0 52.8 40.5 20.1
TASeg 73.9 70.4 67.0 58.8 47.5 24.6
∆ +4.3 +2.3 +3.0 +6.0 +7.0 +4.5

Table 1. Comparison between the baseline and TASeg on different
distances on SemanticKITTI val set.

fences. This can be credited to the sufficient temporal infor-
mation aggregated by our TASeg.

A.3. Ablation on Mask Distillation

In Table 2, we provide different distillation strategies for
Mask Distillation. Feature Distill and Logits Distill repre-
sent that we conduct distillation on feature maps and logit
maps, respectively. Results show that distilling on fea-
ture maps can achieve higher performance than distilling
on logit maps. Distilling on both feature and logit maps can
not bring more improvement. Hence, our Mask Distillation
only utilizes feature map distillation.

Distillation Strategy mIoU
- 71.2

Feature Distill 71.8
Logit Distill 71.6

Feature Distill & Logit Distill 71.7

Table 2. Comparison of different distillation strategies.

A.4. Ablation on Feature Gathering Strategy

In our TIAF, we need to gather voxel-wise image features
with temporal LiDAR points for temporal multi-modal fu-
sion. Table 4 provides an ablation on different feature-
gathering strategies. For Hard Indexing, we only gather
the image features whose discrete coordinates are exactly
the same as temporal LiDAR points. For KNN, we select
nearest-27 voxel-wise image features around a temporal Li-
DAR point and feed them to a PointNet to extract image
features for the temporal LiDAR point. For Trilinear In-
terpolation, we choose the neighbors whose discrete coor-
dinates are in a Manhattan distance of 2 with the tempo-
ral LiDAR point. Then, we utilize trilinear interpolation
to aggregate image features for the LiDAR point. Experi-
ments suggest that Trilinear Interpolation can bring more
improvement than other approaches.



Method mIoU car bicy moto truck o.veh ped b.cyc m.cyc road park walk o.gro build fence veg trunk terr pole sign
MinkUNet (baseline) 68.9 97.8 52.4 81.4 89.7 83.8 78.1 90.6 0.0 94.2 55.8 81.7 0.2 91.1 61.9 89.0 69.7 76.5 65.6 50.9
TASeg (Ours) 72.7 98.0 63.1 90.1 95.2 91.6 82.7 92.6 0.1 94.8 64.3 83.3 0.2 93.0 71.7 89.4 72.2 77.5 67.8 54.3
improvement 3.8 0.2 10.7 8.7 5.5 7.8 4.6 2.0 0.1 0.6 8.5 1.6 0.0 1.9 9.8 0.4 2.5 1.0 2.2 3.4

Table 3. Class-wise IoU scores of our TASeg and MinkUNet (baseline) on SemanticKITTI val set.

Figure 1. Visualization of single-frame, vanilla multi-frame aggregation (directly concatenating) and our flexible step aggregation. Our
approach utilizes different steps to aggregate temporal point clouds for different classes.

Feature Gathering Strategy mIoU
Hard Indexing 72.4

KNN 72.5
Trilinear Interpolation 72.7

Table 4. Comparison of different feature gathering strategies.

A.5. Ablation on Fusion Strategy

After gathering temporal image features, we need to fuse
the gathered temporal image features with temporal LiDAR
point features. In Table 5, we investigate several different
fusion strategies, i.e., MaxPool, AvgPool, Add and Concate-
nation. Results show that our TASeg is robust to different
fusion strategies. Considering that Add and Concatenation
can achieve slightly higher performance, each of them can
be used for the final temporal multi-modal fusion.

Fusion Strategy mIoU
MaxPool 72.6
AvgPool 72.6

Add 72.7
Concatenation 72.7

Table 5. Comparison of different fusion strategies.

A.6. Ablation on SMSA

We provide an ablation study to verify the efficacy of SMSA
when the image input is removed, as shown in Table 6. The
results show that our method can surpass other multi-scan
methods even without images.

Method SVQNet 2DPASS TASeg wo/image TASeg w/image
mIoU 60.5 62.4 64.6 65.7

Table 6. Ablation on SemanticKITTI multi-scan test set.

B. Additional Discussions
B.1. Visualization for FSA

Our Flexible Step Aggregation (FSA) decomposes temporal
point clouds into several class groups and assigns a specific
step for the temporal aggregation of each group. As shown
in Figure 1, for easy classes, such as terrains and roads, we
assign them a large aggregation step; for difficult classes,
such as traffic signs and bicycles, we assign them a small
step. This approach can save much memory and computa-
tion from easy classes while providing sufficient temporal
points for difficult classes.

B.2. Visualization for TIAF

In Figure 2, we provide the visualization of the aggregated
point-wise temporal images by TIAF. Comparing the left
and right of Figure 2, we can find that the overlap region
between the LiDAR and camera is very limited when only
using the present image. However, after aggregating tem-
poral images, the colorized area is enlarged greatly, and it
can cover most LiDAR point clouds, as shown in the cen-
ter of Figure 2. This confirms the rationality of our idea of
leveraging temporal images to expand the camera FOV and
complement present image features.

B.3. Imbalance of Static and Moving Samples

Our Static-Moving Switch Augmentation (SMSA) can alle-
viate the imbalance between static and moving classes.



Figure 2. Visualization of single-frame LiDAR point cloud, point-wise temporal images and point-wise single-frame image.

Figure 3. Architecture of 2D backbone in TIAF for pixel-wise image feature extraction.

Class Car Truck Other-vehicle Person Bicyclist Motorcyclist
Static 95302518 4347360 5352883 440239 5 13

Moving 4128968 238730 103005 376574 298599 87766

Table 7. Point number of different movable classes on Se-
manticKITTI training set of the multi-scan benchmark.

Table 7 provides detailed statistics of static and moving
classes. It shows that there are few training samples for
static bicyclists and motorcyclists, making it difficult to pro-
duce accurate predictions for the two classes. For moving
trucks and moving other-vehicles, they are more than ten
times fewer than the static counterparts, i.e., static trucks
and static other-vehicles. The class imbalance issue signifi-
cantly limits the multi-scan perception ability of the model.
Our SMSA enables movable objects to switch their motion
states freely. Thus we can switch the motion states of ob-
jects in classes holding many samples, such as static trucks
and moving bicyclists, to augment the classes with opposite
motion states, i.e., moving trucks and static bicyclists.

C. Additional Details
C.1. Static-to-Moving in SMSA

Because static objects often park on the side of the road,
which is crowded, when we change their motion states, the
shifted temporal parts of them may overlap with other ob-
jects. To alleviate this, we define a set of anchor points
(4× 4) around the center of a static object, as shown in the

Figure 4. Illustration of Static-to-Moving in SMSA.

left of Figure 4. Then, we define a coverage area (2m×8m)
for each anchor point, and we choose the anchor point
whose coverage area contains the fewest LiDAR points, as
shown in the right of Figure 4.

C.2. Architecture of Image Branch

Given pixel-wise temporal images, we leverage a 2D image
backbone to extract pixel-wise image features. As shown
in Figure 3, our 2D backbone is a UNet architecture with
four levels of feature map. The 2D backbone is isomorphic
to the 3D backbone of the LiDAR branch. The difference
is that the 3D backbone utilizes 3D sparse convolutions in-
stead of 2D convolutions. After projecting pixel-wise im-
age features to 3D space, we get point-wise image features.
They are first transformed and aggregated to the present co-
ordinate. Then we voxelize them and feed them to a 3D
subnetwork that consists of several 3D convolutions, to fur-
ther fuse them, as depicted in Figure 5.



Figure 5. Architecture of 3D subnetwork in TIAF for point-wise
image feature fusion.

D. Qualitative Results
We show the qualitative results (error maps) of our TASeg
and MinkUNet (the baseline) on different datasets as shown
in Figure 6, Figure 7 and Figure 8. To highlight the differ-
ences, we paint the correct and incorrect predictions with
black and red, respectively. Our method brings visible im-
provement to the baseline, especially in sparse and distant
areas. For better visualization on the multi-scan benchmark,
we highlight static and moving objects with red circles. It
should be noted that the MinkUNet [3] we use is a high-
performance version re-implemented by PCSeg [4]. The
notable improvement on the strong baseline further con-
firms the effectiveness of our approach.

E. Leaderboard Screenshot
We also validate our method by submitting our results to
SemanticKITTI [1] and nuScenes [2] test server. As shown
in Figure 9, Figure 10 and Figure 11, our TASeg ranks
1st on leaderboards of three tracks of the two benchmarks,
i.e., SemanticKITTI single-scan track, multi-scan track and
nuScenes LiDAR semantic segmentation track. The appeal-
ing results verify the superiority of our approach over exist-
ing LiDAR segmentation algorithms.



Figure 6. Qualitative results (error maps) of our TASeg and MinkUNet (baseline model) on SemanticKITTI single-scan dataset.

Figure 7. Qualitative results (error maps) of our TASeg and MinkUNet (baseline model) on SemanticKITTI multi-scan dataset.



Figure 8. Qualitative results (error maps) of our TASeg and MinkUNet (baseline model) on nuScenes val dataset.

Figure 9. Screenshot of SemanticKITTI single-scan leaderboard on the date of CVPR deadline, i.e., 2023-11-18 07:59 AM UTC.

Figure 10. Screenshot of SemanticKITTI multi-scan leaderboard on the date of CVPR deadline, i.e., 2023-11-18 07:59 AM UTC.



Figure 11. Screenshot of nuScenes LiDAR segmentation leaderboard on the date of CVPR deadline, i.e., 2023-11-18 07:59 AM UTC.
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